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CHAPTER 5. — DIMENSION OF THE SPACE OF LINEAR SUPERPOSITIONS

In this chapter we present a calculation of the functional dimension of the
space of functions representable by means of linear superpositions and prove
that a representation of analytic functions by means superpositions of
smooth functions can not be stable.

§ 1. (e, d)-entropy and the “dimension” of function spaces

Let G, be a closed region of n-dimensional euclidean space, and C (G,)
the space of all functions continuous in G,. Two functions f; (x), f, (x)
e C(G,) are called (e, §)-distinguishable if there exists an n-dimensional
closed sphere S; = G, of radius ¢ such that

min [fi(x) =f,(x)| > ¢
xeSg

Let F < C(G,) be a set of continuous functions. A subset K < F is
called (e, 0)-distinguishable if any two of its elements are (g, ¢)-distinguish-
able. We denote by N,;(F) the maximum number of elements in an
(¢, 0)-distinguishable subset of F.

Definition 5.1.1. The number H,;(F) = log, N,;(F), by analogy
with the definition of e-entropy, is called the (g, 6)-entropy of F.

Let f, € F. We denote by F,, (f,) the set of functions fe F such that
| f(x) = fo (x)| < Je. It follows immediately from the definition that the

i e logy Hyg (F;.g (fo))
expression lim Iim — - -

6-0 -0 ; log,d
as 1 — .

as a function of 4 does not decrease

Definition 5.1.2. The number
— = logy Hy5(F i (fo)
r(F,fo) = lim lim lim - 2 Hos (P2 (/o)
Amom 620 -0 log,0
is called the functional “dimension” of F at f,. The number r (F)
= sup (F, f,) is called the functional “dimension” of F.

The functional “dimension” r (F) of a set of functions F < C(G,)
has the following properties.
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5.1.1. Let @ < F be a set of functions. Then r () < r (F). Moreover,
if ¢ is everywhere dense in F in the uniform metric, then r(®) = r(F).

Proof. The first part of the assertion follows immediately from the
definition. For a proof of the second part it is sufficient to show that r (@, @)
> r (F, ¢,) for any element ¢, € ®. Suppose that the functions fi, ..., /'y
from a (2 ¢, d)-distinguishable subset of F,, (¢,). Since ¢ is everywhere
dense in F, there exist functions ¢4, ..., ¢y € P such that mezx |f,« (x) — @;(x) |

< min (%, As) (i=1, 2, ..., N). These functions form an (¢g,0)-distinguishable

subset of F,;, (¢,). Consequently N, ;(P;;,(¢0)) =Ny (Fzs (900))-
Hence r (@, @) = r (F, ¢,).

5.1.2. For any set F < C(G,) we have r (F) < n.

Proof. Suppose that f, e F and fi, f5, ..., f, is a maximal set (with
respect to p) of pairwise (g, 6)-distinguishable functions of F,, (f,). Let
0y, 0,, ..., 0, be a maximal set (with respect to g) of spheres of radius 9/3
in G,, such that no two of them have common interior points. Then any
pair of functions f; (x) and f; (x) of the given set satisfies on at least one
of the spheres g, the inequality min lfi (x) = f; (x) | > ¢. For the func-

Xea]

tions f;(x) and f;(x) satisfly on some sphere S; = G, the inequality
min lf,- (x) = f; (%) [ > ¢. Since ¢ is maximal, it follows that one of the

spheies g, < §s;. Consequently on this sphere the inequality we need is
satisfied. We denote by a; the centre of the sphere g, (/ =1, 2, ..., g). Every
set of functions fips figs > fi, €ach pair of which has values differing by not
less than ¢ at one and the same point consists of a number r <2 1 + 1
of functions. (All functions are taken from the set indicated above.) Since
every pair of functions f; (x) and f ; (x) has values differing by not less than
¢ at one of the points g, at least, we have p <C 21 + 1. But since the spheres
{ 0;} do not intersect, ¢ << C/d", where C is a constant depending only on
n. Consequently,
C

511
log, log, (21 +1
F(Ffo) < lim lim lim — 082 108224+ D

Aovon 620 £-0 log,0

5.1.3. If F is everywhere dense (in the uniform metric) in the space
C(G,), then r (F) = n. In particular r (C (G,)) = n.
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Proof. By 5.1.1 and 5.1.2 it is sufficient to show that r (C(G,)) > n.
We denote by C, (G,) the set of all f(x) e C (G,) for which max | f(x) | <e.

xeGp
Let 0 > 0O be a constant such that for any 6 > 0 we can find H = [0/5"]
closed and pairwise non-intersecting spheres o,, 0,, ..., oy of radius ¢
in G,. For any system of numbers { «;} (a;= +1, i=1,2, ..., H) we construct

a function f,,, (x)e C,(G,) such that f, (x) = ae for xeo;
(i=1,2,..., H). These functions are obviously pairwise (g,0)-distinguishable.
The number of functions S (a;y (x) for all possible sets { o; } is equal to 28
Consequently H, ;(C, (G,)) > H = [0/6"]. Hence r (C (G)) > n.

COROLLARY 5.1.1. The space of all polynomials in n variables has
Jfunctional “dimension” n.

-In the same way, the following properties are easily proved.

5.1.4. Let G, and G? be two non-intersecting closed regions in #- dimen-
sional space, and F (G, U G?) a space of functions, defined and continuous
on G, U G?. Denote by F (G,) the space of all functions ¢ (x), defined on
the set G,, for which there exists a function @ (x) € F(G! U G?) such that
@ (x) = @ (x) for x € G.. The space F(G?) is defined similarly. Then

r(F(G,uG)) = max {r(F(G,); r(F(G))}.

5.1.5. If F is a linear space, then-r (F) = r (F, f,) for any function
fo € F. If F is a finite-dimensional linear space, then r (F) = 0.

5.1.6. Let F be a linear metric space with metric p (¢, ¥) between a pair
of functions ¢, v € F. We denote by F (p,) the set of all those functions
@ € F for which p (¢, 0) < p,. Then r (F) = r (F(py)).

COROLLARY 5.1.2. The set of all polynomials in n  variables whose
partial derivatives of order p, forany p = 1, 2, ..., are bounded by a constant
0 < K, < oo has functional “dimension” n.

5.1.7. Let F be a complete linear metric space and F = U F,, where
i=1
{ F; } are sets of continuous functions. Then r (F) = max r (F)).

i

We now write down the main result on the functional “dimension”
of a set of linear superpositions.

5.1.8. Let ¢g; = ¢q; (x4, X5, ..., X,) be continuously differentiable func-
tions of n variables, and p; = p; (x4, x5, ..., X,) continuous functions of »
variables (i =1, 2, ..., N). We denote by F (G,, { p; }, { ¢; }) the set of super-




|
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N
positions of the form Y p;(xy, X, oy X,) i (¢; (X1, X3, o0y X)), Where
i=1
(xy, X3, ..., X,) € G,, and { f; (¢) } are arbitrary continuous functions of one
variable. Then in any region D, there exists a closed subregion G, < D,
such that

r(F(Gna {pi}’ {ql}))< 1.

For ease of presentation we limit the proof to the case n = 2 (8§ 3).
It is interesting to compare the result 5.1.8 with the following proposition.

n

5.1.9. Let ai(xl,x:z,‘..,xn) —_ Z OCU(XJ) (l =1,72,..., 2”"*—])

i=1

be the continuous functions involved in Kolmogorov’s formula (I).
We denote by Y (G,, a;) the space of all functions of the form
W (o (xy, X5, ..y X)), Where W (7) is an arbitrary continuous function of
one variable and (x,, x,, ..., x,) € G,. Then for any i and every region G,
r( (G, a;)) = n (see 5.1.7).

Let p;(xy, X,, ..., x,) be fixed continuous functions of n variables,
q1.i (X1, Xgs oo0s X)), o (X1, Xgy coy X))y ooy @i (Xg, X5, .o, x,)  fixed  con-
tinuously differentiable functions of n variables, and f; (¢,, ¢,, ..., #;) arbitrary
continuous functions of k variables, Kk <n (i=1,2,..., N). One would
expect that the set of superpositions of the form (V) (see Chapter I) has
functional “dimension” not greater than k. However, in this direction, only
the following partial result has so far been proved.

5.1.10. Denote by F(A G, {p;},{q1.i}> - { qc;}) the set of all
those continuous functions ¢ (x,, x,, ..., x,) for which there exist continuous
functions { f; (¢4, t,, ..., #;) } such that in G,.

QD (xlﬂ x2> smey xn)

I
M =

) pi (xl > x2> treo xn)fi (ql,i (xlo x27 seey xn): fe ey CIk,i (x1> x2> ey xrr))

i

and

max sup Iﬂ(tlthQ"'th)l < l sup I(/)(xlax?,a“-axn) |
i (1. t9, 5., t}) (X1, x2, ..., xp) eGpy

Then, for any A < oo, in any region D, there exists a closed subregion
G, < D, such that

F(F(ﬂw Gn: { pi}a{ql,i}a ) {Qk,i})a O) < k'

From the last result and Banach’s open mapping theorem there follows
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CorOLLARY 5.1.3. For any continuous functions p, and continuously
differentiable functions qy ;,q, ;5 ..., Gk < n (i=1,2,.., N) and every
region G, there exists a continuous function that is not equal in G, to any
superposition of the form (V).

§ 2. (g, 0)-entropy of the set of linear superpositions

We denote by S (0, z) the disc of radius 6 with centre at z. Let p (2)
= p(x,y) and g (z) = g (x, y) be functions defined in a closed region G
of the x, y-plane and having the properties: ,
aq (x, 0q (x, . X
a) p(x,y), q; ) , qg V) are continuous in G and have modulus
X y
of continuity w (9),

1 1
b) the inequalities 0 < y <{| grad [¢ (r)] | <—and | p (z) | <—, where
Y 7

y 1s some constant, are satisfied everywhere in G.

LemMMA 5.2.1. Let S(0,z) = G andlet p,(t) be the function equal to
2 \/ 6* — (t—q (2))* | grad [¢ (2)] |7 on

q(z) — 9| grad [q(2)] | <t<q(2) + 8| grad [q(2)]]

and equal to zero elsewhere. Then

[ L) = By (e(@. 1) S5, 2) | di < e, () (8) 5,
where ¢y (y) is a constant depending only on y.

Proof. Let [a,b] < e(q,t) n S (9, z) be the segment of the level curve
e(q,t), endpoints a and b, lying on the boundary of S (0, z); [z, a] and [z, b]
the vectors with origin at z and endpoints at a and b, respectively;

v, =y([z al, grad [q(2)]), @, = y([z,b], grad [q(2)]).
We have '
a—q— ds

lt—q()| =|q@ —q()]| = l § 5

se [z,a]

— 5§ cos oy | grad [g(2)]] (1 +0(1) w(d))
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