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ON THE NUMBER OF ZEROS OF FUNCTIONS

by A. J. VAN DER POORTEN

0. Introduction

The object of this note is to give a complete description of a technique

that leads to estimates for the number of zeros (always assumed to be

counted according to multiplicity) of certain classes of functions in discs

of given radius and centre in the complex plane. As we show, the technique
also suffices to prove that functions cannot be (relatively) small too often

in discs. In order that this paper may be a useful source we have made our
proofs essentially self-contained; our lemmas are often more general than
is required for the immediate applications and we have taken the opportunity

to mention various formulae and tricks which, though no doubt well-
known in the folklore, are by no means readily accessible in the literature.

We principally consider the case of exponential polynomials, that is,

solutions of homogeneous linear differential equations with constant
coefficients, and then briefly indicate the manner in which the method
described extends to a very much wider class of functions.

Though the results are of general interest, the principal motive for their
formulation has resided in their application in the theory of transcendental
numbers. In this context one constructs auxiliary functions and shows

that the contradiction of the result to be proved implies that, contrary
to the construction, the auxiliary function vanishes identically; see, Gelfond
[7], Chapter III, Tijdeman [28], Brownawell [2], Waldschmidt [34], Cud-
novskii [3] (see Waldschmidt [35] for a summary) for typical application
of theorem 1. The second result, theorem 2 is important in obtaining
transcendence measures as well as in recent work on algebraic independence ;

for a recent application see, for example Cijsouw [4].
The present theory would seem to have been initiated by the work

of Gelfond, see [7], p. 140ff. The work of Tijdeman [26], see also [27],
piovided the major breakthrough which has simplified subsequent results.

There is also an analogous p-adic theory, see for example Shorey [25].
In fact the results are simpler in the p-adic case as can be seen in the recent
work of van der Poorten [24], see also [23].
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1. A BASIC LEMMA

One learns that the essential step in constructing an estimate for the
number of zeros of a function in a given disc consists of obtaining an upper
bound for a ratio

(1) \F|s,/\F|s,where S* > S > 0, and, if the given disc has centre z0, then | jp |Ä

max I F (z) |. We see that this is sufficient by virtue of the following
|Z-Z0|=Ä

lemma, (see Waldschmidt [36], p. 166, for a slightly weaker statement).

Lemma 1. Let S*, S, R be real numbers satisfying

S* > S > 0 and S* > R > 0.

Let F be a function holomorphic in some open set containing the disc
I z — z0 I < S*. If F does not vanish identically in the disc \z — z0\ < S*
then the number of zeros n (F, R, z0) of F in the disc | z — z0 | < R

satisfies

(S*2 + SR\ I F U
(2) n (F, R, z0) Log < Log

1

_
[s

S*(S+R)J IF

Proof There is no loss of generality in supposing for convenience that
z0 0. Suppose then that F has zeros at z1? zn in the disc | z | < R
and write

«w-'wn
Then G is holomorphic in an open set containing the disc | z | < S*9

a simple calculation confirms that

I G Is. \F\S.,

and, by the maximum-modulus principle,

I G \s < I G 15*

However
S*2 - Sei0 zh

G\s> \ F Is Th. min
S* (Seie — zh)
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Each factor in the product on the right is the square root of an expression

of the shape

(3) (S*4 - 2 SRhS*2cosxjj + S2Rl)jS*2 (S2 - 2 cos +

where zh R,/'1'1' and \j/ 6 - (j),r One sees that the turning points of
(3) as a function of i// occur when sin t// 0 and that the minimal value

of (3) is

(4) S*2+SRh)IS*(S+Rh))2

One easily confirms that (4) is minimal for 0 < Rh < R when Rh R,
whence we obtain

the extreme case. I am indebted to Michel Waldschmidt for mentioning
the result of the lemma to me. The lemma improves upon a similar result
obtainable via Jensen's theorem, (see, for example, Tijdeman [26], p. 3).

According to the above observations, our principal attention below is

directed towards the finding of upper bounds for ratios of the shape (1).

Although the principles of our techniques are not new, many of the details
have been little more than folklore and are presented here explicitly for
the first time.

The following lemma is presented in somewhat exaggerated generality.
Its implications will become clear when below we come to look at specific
examples.

Lemma 2. Let S*, S be real numbers satisfying S* > S > 0 and
let G be a function of the shape

bl9 ba complex constants, where gu ga are functions holomorphic
in some open set containing the disc | z — z0 I < 5*. Further let z1?
be points in the disc | z — z0 | < S and let tx, tQ be non-negative integers,

and the assertion of the lemma follows.

The lemma is " best possible " ; the function F (z)

2. A USEFUL IDENTITY

G(z) Y*-ih9k(z)>
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Finally denote by Aji the cofactor of the typical element in the a x &

determinant
A I g\'J)(Zj)\ldéU^a

suppose that d =£ 0, and assume the notational conventions of the
introduction above. Then for w such that | w — z0 | S* we have

(S oc») f ^I |y-zo| S

and it follows that if G does not vanish identically

(6) I G |s./ I G |s < ELi max | E*=i -y-gk(w) | S •-— t +1z! (o — |zA — z0|)

Proof By the residue theorem the right-hand side of (5) is

E/c=i EA I 9k (w) Z^=i (zA) —

E*=i Ea=i Kgk(w) iihk, (dhk, the Kronecker delta)

G(w),

as was asserted. Having thus established the identity (5), we conclude that

1

G Is* < YA=i max I E*=i 9k O)
2n

d)G(y)

and estimating the integral on the circle | y — z0 | S, the assertion

(6) is immediate.
We have stated the lemma in such generality as might be appropriate

for the purposes of this note. The reader should observe that, moreover,
the same idea can be used to obtain any combination

EWA K

on the left-hand side of an identity similar to (5) ; this is useful in isolating
the coefficients bk which is necessary when one is investigating the number
of points in a disc at which the given function G (z) may be small ; see

theorem 2 below for details. We remark that the identity (5) should be

viewed as a (degenerate) case of the integral form of the Hermite
interpolation formula.



3. An estimation by interpolation

Lemma 2 reduces the problem of estimating the number of zeros to
one of finding an upper bound for determinantal combinations of the shape

v-^<r ^ A,k g \L*=i -ydk(w)
As we propose to discuss only some very special cases, we alert the reader

on the one hand to the encyclopaedic Muir [14], and, for some determinants
relevant in transcendence work, to van der Poorten [21].

Lemma 3. Let co1? <x*a be complex numbers and denote by DJ}i the

cofactor of the typical element in the a x a determinant

D I
•

Let n be a positive integer, and write maxt | cok | < Q. Then for each

- 1.2,..., a

(7) Tjk= 1

Dx,k

D (n — 1)!
<-

i (niwi)"-1 (n\w\y
l-l 2-,h=lQ'-1 ^ (h-1)! (n-h)l \X-l

Note. The quantity on the left of (7) remains well-defined by continuity
even though the cok be not distinct. However, we treat the cok as formally
distinct.

Proof. We commence by asserting that off1 is the coefficient

of zA_1 in the polynomial

(8) pu zucorinu/z~~(0h
h=tk \^k

To see this, observe that P (z) is the unique polynomial of degree at most
0- - 1 determined by the a conditions (this is just Lagrange interpolation)

(9) P(co„) ®r\ (h l,...,cr).
On the other hand, if
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then

Q(œh) YX=i œl 1 (YA=IcdÏ 1 ~ œk
1

^kh ~ œh
1

'

and it follows that Q(z) P (z) as asserted.

To now evaluate the coefficients of P (z) we expand P in a Newton
interpolation series

(10) P(z) Yil=lbh(z-a>1)...(z-coh_1),

and observe that by virtue of the residue formula we actually have

»
1 f p(>'}

_
1 f r""1

bfo — - —- cly — I dy
2tîî JcCr-Wj) ,..(v-co») 27ii Jc (y — cux)... (7 — coft)

(.h 1, ...,(7),

where the contour C is, say, any circle about the origin of sufficiently large
radius in order that C contain the points cou coa. The second, rather
remarkable, equality is of course a consequence of the fact that the residue
formula only " notices " P at the poles col9..., œh, and at these points,
(8) implies (9), so P (y) coincides with y"-1.

It is convenient to evaluate the second integral at its pole (if there is

indeed such a pole) at oo. Accordingly we obtain

1 f y'1"1
(11) b,,=— — -,jzdy

J_ f dy

2 niJe- y"-h+1 (1 -corf)...(1 -(ohy)

where C' is now a circle about the origin of sufficiently small radius in
order that C' not contain the points oq-1,..., co^-1 (if some cok should
vanish treat it as formally nonzero albeit arbitrarily small). It follows
that bh is exactly the coefficient of yn~h in the power series expansion about
the origin of { (1 — a^ y) (1 - œh y) }_1, that is

(12) IM IE|„|

It is now no longer of any matter that the cok not be distinct or that any should
vanish. Inserting the estimate (12) in (10) we easily see that
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is an upper bound for the coefficient of zA 1 in the polynomial (z) of (8).

Accordingly we have that

i;=i D,k (cokw)h

D (n - 1)!

1

y&=i
w I"-1 /n —1\

(n — 1) \h — 1/ — 1
a,n - A

\n — h

(A — 1)! *-• (h—A)!

which is the assertion.

The following is essentially an immediate corollary of the previous lemma.

Lemma 4. Let gbe a function analytic in a sufficiently large disc about

the origin and suppose that inthat disc

(14)

Let gk(z) g (cok z), (k=1,..., o)andotherwise let the notation be as

in lemma 3. Then ifIgI isthe function

(15) M(z) Z,ti c„-»-1 '

(«-D!
we have for each A 1, a

(16)
D

y*=i-7T0 (®tw)
D

<
QÀ

(£2| vvl)""1

(h-1)!
(ß|w|)

h-1
A — 1

Proof. By lemma 3 we have

D
E*=i-^r 0(®*w)

D

Q

Za V">oo

k- 1 2-tn=l n - 1

Kw)"

1 ^ (ß|w|)',_1 A-l\
r-T Z'.=i

_ ij 'c"'1 '

(n-l)!
(ß|w|)"-''

(n — h)

which is the assertion.

The critical aspect of the above estimates is that they are independent
of mmh^k \ œk — (oh \ d. The interpolation method of lemma 3 is not at
all new nor is the idea of obtaining results independent of d. The latter
seems appropriately attributable to Turân [30], whilst the former occurs
in Makai [11], [12] in the context of our problem. The interpolation method

appears in a more general way in the thesis of van der Poorten [16], and
thence in the papers [17], [18] [19]. However the recognition of the general
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pattern is due to Tijdeman [26], whence see Balkema and Tijdeman [1].
For further details see the references cited in the papers mentioned
above.

4. Exponential polynomials

We commence by making explicit some folklore the principles of which
can be found in [16] and Tijdeman [26], and which is made explicit in
another context in van der Poorten [20].

Lemma 5. For some fixed positive integer cr, and some given function
g, supposed holomorphic in the domain under consideration, denote by
J the set offunctions G of the shape

G 00 LLi M («*0 >

where Zq, ...,ba; cc1, oca are complex numbers. Then, for all sets of non-

negative integers p (1), p (m) with sum Yji i P W a (and all
positive integers m such that 1 < m < cr), for each function F of the shape

F(z) ZU 1 ZtHiahtz'~1g('~1)

the aht complex constants, there is a sequence offunctions in J converging
uniformly to F in compact sets.

Proof. The lemma depends upon noticing that functions of the shape

F are actually, in a sense, particular cases of, rather than generalisations
of functions of the shape G. Indeed, reindex so that G appears as

(17) G(z) ÏÏ-iW>*9M,
and choose the coefficients bht as functions of co11,..., comp (m) (so of
al5 ocfi so that for each h — 1, m

« h „ IV» ^ - V 00 ^
1

2ni
(is) =Zf=(i cClO n:^(l-ov)
where the closed contour C contains all the coht but excludes any
singularities of g. Clearly there exists a sequence of cr-tuples (co11?..., comp (m)

which converges to (col5..., cOjl ; m2,..., cow) componentwise, and in the

limit, (18) shows that (17) becomes F (z).

I am indebted to D. W. Masser for any felicities in the terminology used

in the lemma.
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The following theorem is a result due to Tijdeman [26], [27]; see also

Waldschmidt [36] p. 164-174. A history of the problem can be found in

the above mentioned works.

Definition. Let p (1), p (m) be non-negative integers with sum

£ p (A) <7, let aht (A= 1, m; f 1,..., p Qij) be complex numbers

which do not all vanish, and let co1,..., com be distinct complex numbers.

Then a function of the shape

(19) F(z)=1^1?^ a**-1 ^
is called an exponential polynomial of degree a, with frequencies coh and

coefficients aht.

Theorem 1. The number of zeros n (F, R, z0) 0/ 0/? exponential

polynomial F of degree a and with frequencies col9..., com satisfying

maxÄ I coh I < £2, in a disc of centre z0 and radius R, is less than

nm Jogy, ,x l (y*-i)(y + i) n_ i
(20) (Ö- — 1) + — — ÜR +

log t y(y— t) log t log x (y 1)

for all y > % > 1.

Proof We consider the exponential sum

G(z) Fl=i bke°k". maxt | œk | < Q »

and suppose that z0 0. In lemma 2 take gk (z) — and tj9 Zj such

that tx X — 1, zA 0 (2= 1, <7) and observe that the determinant
A of lemma 2 now coincides with the Yandermonde determinant D of
lemmas 3 and 4. Then from lemmas 2 and 4 we obtain

s)
We observe that the information (21) is independent of the coefficients
of G and independent of minÄ^fc \ œk — coh\; furthermore, under a translation

only the coefficients of G change, so (21) is valid for all centres z0.
So by lemma 5 we have, writing S*/S y > 1,

I Fl /I F I ^ rQs* 1 ya-h 1-1I F IWI F \s < e 2,ä o —77— La=i 7

(22)
eßs* / (O.ST\h ros*\h\eQS*

'

(QSf x(QS*f
MLh=0~hT



— 28 —

It follows that, with the gain of some tidiness, but the loss of some precision,

and noticing that — log f 1 — - < —-—)
V V y J f - 1/

log I F Is*l I F \

s < (p ~ 1) log y + — + Q (S* + S)
y - 1

Finally let x (S*2 + SR)\S* (S+ R) > 1; then lemma 1 implies that

(23) n(F,R,z0) < — L - 1) log y + —L- + QR (-7^^±12|
log T I y - 1 y (y-x) J

as asserted.

Corollary 1. If g 1 //zcft n (F, 7^, z0) 0. For o > 1 wc have

(24) n (F, F, z0) < 3 (er — 1) + 4ßF (Tijdeman [27]

or
(25) ft (F, F, z0) < 2 (a - 1) + 5ßF (Waldschmidt [36])

or
(26) ft (F, F, z0) < 4 (o- - 1) + 3QR

Proof. The first remark is trivial ; we require a > 1 in order to assimilate
the term l/(y - 1) in (20). To obtain (24) choose, say, t 3.5, y œ 30,

and for (25) x 3.5, y 10, whilst for (26) x 3.5, y 110. Parameters

were calculated on the HP 65 belonging to John Conway, for whom see

Knuth [9].

Notwithstanding the apparent precision of our method, (20) gives quite
inadequate results in the asymptotic cases. For example, we know from
results of Pölya [15] and Dickson [6] that lim^^ n (F, F)/F < Q, but
(22) does no better than lim#^ n (F, F)/F < eQ. At the opposite extreme,
" the local valency problem ", M. Voorhoeve has shown, using an idea

of Hayman [8], that if a > 4 then F < 1/8 Q implies n (F, F) < a — 1,

but nothing like this precision is available from (20); incidentally, because

F has a coefficients, it is clear that in every disc, no matter how small,
one may have n (F, F) > g — 1.

Although theorem 1 is more than adequate for applications to
transcendence arguments, one can do better; for example Voorhoeve [31] has

4
shown that n (F, F ,z0) < 2 (g — 1) + - QR by a quite different argument.

71

Actually because the result in the exponential polynomial case is independent
of centre z0, lemma 1 is quite crude (note the " extreme case ") because

it assumes that the zeros accumulate at a point near the edge of the disc.
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We now turn to a generalisation of theorem 1 wherein we show that an

exponential polynomial cannot be small at too many points. This result

largely includes earlier similar results of Mahler [10], Tijdeman [29] and

Cijsouw and Tijdeman [5]. As we shall see, theorem 2 actually contains
theorem 1 as a special case.

We shall retain, without further explanation, the notations introduced
in the lemmas above. In preparation for the proof of the theorem we require
two lemmas.

Lemma 6. Let
m p(k)

f(z) i y
1 5=1 (S ~~ 1)!

m

be an exponential polynomial of degree at most o J] p (k).
k ~ 1

Write
m

Dk H (.^k-^hY^ < - I «'>* • min
h= 1 /jgtfc
h^k

(k 1, m)

Denote by 6 a real number such that (S&f~x > (a- 1) and by S a real
number we shall suitably determine below. Then

m

\bks\<2'-'Dp n (e + Qhy^-
h= 1

and in particular
m

IW)I <Dk1 n (e + Qhym~shk \ FIs 1 ,...,p(k))

Proof. Notice (compare lemma 2) that if A> ks is the cofactor of the
typical element in the <7X0 determinant

2 — 1

5—1
cop3

(here rows are indexed by the pairs (k, s) and columns by then plainly

Ks y U-D!
2ni

A. ks

IU =s

dC

cF(0,Àr,
SO

(27) k.\ < I y
A=1

'A,its (2-1)!
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But

V (A~1)! -tAx* _ f (s -1)! (h, t) (k, s)

il(;.-/)! "'* J 1 0 (h,t)*(k
so AXtkJA is exactly the coefficient of zx~x in the polynomial Pks (z) of
degree at most c—l defined by the a conditions

<5-1)!

(o (*,o #(t, j)
We now make a change of scale whereby we replace z in F (z) by z 6; this
is tantamount to replacing each cokbycok/0 whilst each bks become bks/6s~x.

We arrange that (SO)<T_1 > (cr — 1)!. Then (27) implies that it suffices to find
an upper bound for the sum of absolute values of the coefficients of Pks (z).
There is a useful stratagem whereby one obtains such a bound, dependent
on the observation that if a polynomial P (z) has non-negative real zeros
then I P(—1) I is the sum of the absolute values of its coefficients. For
formal details of the required generalisation of this remark see van der
Poorten [17], lemma 2.

One confirms readily that the polynomial Pks (z) is given by the integral

1 f (C — cOk)^1 t—t fz-œh\ p(h)

(28) Pks(z)- — ' n -— ^2ft* Jc/c C — z h= i \C ~œhJ

where Ck is a suitable contour about cok excluding the other coh and formally
excluding z; in fact (28) is just a special case of an integral form of the

Hermite interpolation formula.
So

(z-co^-1 / 3V(fc)
P*s(z)=i)*

(p(fc)-s)! (âç)

whence

(29) I] (l+i2fcy(*)-^dt"(<,w"')
Ä=1

But in the estimate (29) we have estimated the numerator as if Pks (*)
were a sum of polynomials with non-negative real zeros Ql9 Qm. Hence

(29) gives an upper bound for the sum of the absolute values of the
coefficients of Pks (z)' Recalling the scaling we are assuming, (27) implies that

m

\bks\< 2— d;1n (0 + ß*)'(*)~'M4r(',(*)~')if|s
h= 1

n
/i=i
hï k

z cok

C — C0fc

-1
COu-OJu

PC«) I
£
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In the special case s — p (k) we have very simply that

f z-œhV(h)~ôhk
p"<"<z) -

and the estimate for bkp(k) follows immediately from (27) and the argument

outlined above.

Lemma 7. Letal5ct„ be distinct points such that

F ('~1}

0-1)!
< Xht <Xh<X

and

A» I fi («a -a*)t(i) I
>

I ahImin | a„- <5,,

k 1

k=£/t

(A 1, «; t= 1, T (A)) w/zcre t (1), t (n) are positive integers with
n

sum £ t (A) JV.
/» i
£*, 5 he real numbers satisfying S* > S > 0 and S* > R > 0.

Then.

<
s*

n t(/I) n

+ z i/t=l f=l k= 1

s* - S hi\ \S*2 + SRk/

(S* +RhRk)(S +Rk)\xik)
:*2 + SRk

X- (T(h)-t)°h

Proof. By an integral form of the Hermite interpolation formula we
have

1

2ni

" /S*2 - C«At(fc)

I u
/(0flG*(C-a,)) C

d(

f(z) n
S*2 za, t(*>

+

*=i \S* (z — ak)

2rci »=, ft0-1)!

+

" /(S*2 - ÇâAt(lk) dC

C„
(C " a"} S ((S* (£-«*)) r^~z

as can be seen directly by the Cauchy residue theorem; here Ch is a suitable
contour about ah excluding the other ak and formally excluding z. By the

argument detailed in lemma 2 we have for 1 z I S.

(30)
zakn \s* (z—%k),

t (k)

> ^ ^(s*2 + sRk\ik)
i\\(sns+Rk)



and

(31)
1

2ni

— 32 —

" fs*2 - Cöcky(k) dÇ
f(on —I ——

m>s. *2 V«* (£-«*)/C-Z <\F\
s*

s* - s

We select z such that | F (z) | | F\ s
whence we may suppose that z

is not near any oth. Then by explicit evaluation similar to that in lemma 6

we obtain.
1

(32)
2ni

#
" (S*2 - Çâkym d(

cf"*"' JÎ \S*(C-<Xk)J
n /<\*2 4- R R \T(fc)

The three inequalities (30), (31) and (32) together with the integral
interpolation formula now readily yield the lemma.

Theorem 2. Let
m p(k) ^

F(z) Z E
ks „S- 1 o0ikz

\ s=i (s — 1)!
z e

an exponential polynomial of degree at most a ^ p (&) (>1)
/c 1

w/Y/z

Dk I n (cofc — co,,>.pc>) cot Qk < ß
/l= 1

/I 4 /C

<4 min | | (k 1, m)
/i4/c

Further let al3 aw distinct points such that

n

4 in («/. -«)c)t(fc) I ' I «/. I min | ot„ — | <5A

k= 1 kï h

k^ h

and

0-1)! <Xht<Xh<X

(A 1, «; t~1, t (//)) w/zere t (1), t («) are positive integers with
n

sum Y t (A) iV.
h=l

Then if
N> 2((j-l) + 5£TR
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wehave
n x (h)

\bk,\ <Dk1d^^k)'s)(3JV/4R)»-1 £ I XhtN'1 Akl ökitli^,H5R)N
h=lt=l

< D;1 d"("»)"') (3N14R)''1 A -1X

{where A min Ahôhz(h)~'). (k-1, 1, p
(h, t)

In particular for k 1, m
n x(h)

\bkpik)\<D^(N/eRy-iII V*,(Ä)-t)(5*)N
h= 1 f 1

Proof. In the proof of theorem 1 we showed at (22) that

eflS* / <,-1 (ßS)A .-1 (ßS*)"\
(33) ,F|„< |F — (&• ÏT-ÏT-)
whilst lemma 7 gives an inequality

;

y "fS*(S+Rk)\t(fc)
j (34) |f|s<lf|s.— ^

with

: Substituting (33) in (34) thus yields an inequality of the shape

j (35) \F\S(1-Y)<E
with

QS* / a-i {QS)h

\ and we require, in order that we obtain a meaningful result, that Y < 1.

.j Firstly we simplify (36) as in theorem 1, and obtain on writing t
:j (S*2 + SR)/S* (S+R) that

j (37) - log Y > N log t - (<7 - 1) log y — Q (S* +S) -2 log (y/y - 1)

\.\ We conclude that (seeing that the last term is insignificant) it suffices that
j j N > n (F, R, 0) in order that — log Y be positive. Moreover lemma 6

N yields an inequality of the shape

(38) \bks\<\F\sZ

y L'Enseignement mathém., t. XXIII, fasc. 1-2. 3
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with
m

Zks < 2a~sDk1 n (0 + ^/(Ä)~W*
Ä=1

Thus (35) together with (38) gives

(39) \bks\<

which is of the shape we require. Then it remains to appropriately choose

parameters and to make simplifications so as to obtain a result in simple
shape.

For example select y 10, % 3,8. Then we may choose N 2 (a-I)
+ 5QR and from (37) obtain that 1/(1—7) < 3, (provided only that
g > 1). With this choice it suffices for the scaling of lemma 6, to choose
0 > 2 (g - 1 )/eR at (38). By now suppressing all details (that is, replacing
all Rk, Qk, by R, Q, respectively) and estimating E with the above
choice for the parameters we get

Y
n x(h)

(40) £<r(5Ä)wI Z N
3 h=l t=1

and

(41) Zks < Dï1 d^»M-sH2leRy-1 (2(a -1) +eQR)rl
so certainly either

(42) Zks<D,"1 d4"0> <*>-•> jmax (jgß
'

>

or, more tidily, though less sharply

(43) Z*s < D^1 dk(p(ky~È) (2NIeRT'1 < Dkx dk(p(-k)~s (3N/4RY ~~1

We further recall that if s — p (k) then (42) and (43) become respectively

Z*p(*) < D,1 jmax (^4Q ^kpm <

These estimates yield the results of the theorem.
One can of course obtain alternative estimates more suitable to a

particular application; in particular it would in practice be appropriate
to select the parameters, and thus S* and S, according to the relative sizes

of g — 1 and QR.
We have made a point of specially mentioning the simpler bounds for
1 Kp(k) I because in typical estimations in transcendence theory one has the
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bks9 or even the bj(s~ 1)! rational integers; thus as soon as | bkp{k) | < 1

one has bkp{k) 0 and then a fortiori one has sequentially bkp(k)h

o which eventually shows that F vanishes identically. Thus in

this circumstance it suffices to have an estimate only for the leading
coefficients of the polynomial coefficients.

In applications it is of course necessary to have good lower bounds for

the Dk and the Ah. For some such estimates see Cijsouw and Tijdeman [5],

lemmas 5 and 6.

One case is of sufficient interest to mention specifically :

Corollary. If oq 1, a2 2, oe„ R (so n R) and t (h)

T(h= 1, n), so N RT, then

F (#-1}(/2)

(t — 1)!
< '/.in < xu < i (h!> •••> r •••'T)

and

N RT> 20-1) 4- 5QR,

implies that for k 1, m

\bkp(k)\<ö;'(W1 t £ X
h=1 t 1

< Dkx (N/eRy1 30Nx

Proof Note only that (A—l) (R~h) Î > (R— 1) > (R/6)R;

(by sharpening lemma 7 for this case one can improve the 30 to about 15).

5. Further results

We consider some further applications of the method of this note.

It is instructive to observe that the success of these applications depends,
in effect, on forcing an analogy with the simplest case, that of exponential
polynomials. The methods of Hayman [8] applies to a different class of
functions, which does however intersect with the class considered here.

For an example of this different method at work, see Yoorhoeve, van der
Poorten and Tijdeman [33]. In this context see also Yoorhoeve and van der
Poorten [32]; the ideas here however relate to the new method of Yoorhoeve

[31].

Continuing to use the notation of the previous sections, we observe

that if in lemma 2 we take tk X — 1, zx — 0 and gt (z) g (cofz) where

g is given by (14) then the ratio Àx, JA of lemma 2 is given by
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Ax,kl A — D x,k! x-i-
where D is the Vandermonde determinant of lemma 3. Then lemma 4

and lemma 5 allow us to estimate the number of zeros of functions F of
the shape

(44) F (z) ST=1 £><*> aM z'"1 g«-»
in discs with centre the origin. Indeed, the analogue of (21) becomes

—l (QS*)h~Ä

~s) |Ca-1'

and the only important new addition is that one requires, if g (z)

X — z", that c0c1 i ^ 0.
nl

An easy example is given by the class of functions

(45) g (z) /„ (z) y» o 1)...

for g in C, g not a negative integer. Here it is amusing to observe that one
has

zf'n (z) M + (z~/t)/„ (z) and hence z'"1//"1* (z)

rt (z; ju) + q, (z; p)/^ (z)

for t 1,2..., where the polynomials rt, qt have degree respectively at
most t-2 and t-1 in z. It follows that, with a slight change of notation, the

function (44) can be taken to be of the shape

f(z) zr=oA(z)/,M,
where the Ph are polynomials of degrees respectively at most p (0),

p (1) - 1,..., p(m) - 1 and p (0) > maxfc p (fc), co0 0 (so fß (co0z) 1),

and we take YJ= o p (h) g + 1.

However one need not be as explicit as regards the Taylor coefficients

of the given function g. For example consider a Weierstrass elliptic function

p with given fixed algebraic invariants. Then one easily shows that there

is a point v such that

I p(f) I < c and I p(A_1)(?f) I > o~ca ,2 1, ...,cr

for some c depending only on p. It is then easy to conclude by the method

we have described that if maxk | œk | — Q < 1 then a function F =£ 0

of the shape
F (z) aht z-1 p^> +v)
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cannot have more than cr a log a zeros in a disc | z | < c", where c\ c"

depend only on p. We are indebted for the above details to D. W. Masser

(for a problem involving zeros of polynomials in several variables see his

[13]).

To extend our method to a class of functions wider than that given

by (44) is practical provided only that one can usefully estimate the
determinants arising in lemma 2. This can certainly be done in the case

f(z) ir=ii?!Wiog zr1^,
for details see van der Poorten [22].' A similar argument should allow one

to deal with functions

E*=i bhfflh(z),

where fß is given by (45) ; now lemma 5 allows one to consider rather
surprising functions. There are further, rather isolated cases where one can
deal with the determinants; for some examples, and further references see

[21].
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