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§ 2. A CRITERION FOR X\ c P" TO BE STABLE

If/ (a) is an integer-valued function which is represented by a rational
polynomial of degree at most r in n for large n, we will denote by n.l.c. (/)
(the normalized leading coefficient of /) the integer e for which f(n)

nr
— e — + lower order terms. (What r is to be taken, will always be clear

r
from the context.)

Proposition 2.1 *). (The "Hilbert-Hilbert-Samuel" Polynomial).
Suppose X is a k-variety (not necessarily complete), L is an invertible sheaf
on X and J cz (9x is an ideal sheaf such that Z Supp (9X/^ is proper
over k. Then there is a polynomial P (n, m) of total degree ^ r, such that,

for large m

x(LnUmLn) P(n,m).

Proof We can compactify X and extend L to a line bundle on this

compactification, without altering the validity of the theorem so we may
as well assume X proper over k. Let n: B -» A be the blow-up of X along

J (i.e. B By (A) Proj ((9X © J © J>2 © and let E be the exceptional

divisor on B so that J 0B (9 (—E). The well-known theorems of
F.A.C. (Serre [18]) for the vanishing of higher cohomology in the relative
case imply that when m > 0:

0 7i* (0 - mE))

ii) R%((9(-mE)) (0), i > 0

Now examine the exact sequence:

0 > J>mLn > Ln LnjJ>mLn ^ 0

The Hilbert polynomial for x (fn) certainly satisfies the conditions on P.

Moreover, in view of i) and ii); we have for m > 0:

x(X,JmLn) x(B,7i*Ln(-mE)) x (B, (tt^L)®" ® (9 (-£)®m)

so, a theorem of Snapper [5, 21] guarantees that this last Euler characteristic
is also a polynomial of the required type for large m and n. By the additivity
of x we are done.

1) This result and its geometric interpretation are essentially due to C. P. Rama-
nujam [16].
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Definition 2.2. In the situation ofProposition 2.1, we denote by eL {J)
(the multiplicity of J measured via L) the integer n.l.c. (x (Lnl<fnLnf).

Examples, i) If J 0 and X is complete, P is the Hilbert polynomial
of L. ii) If Z is set-theoretically a point x then P is the Hilbert-Samuel

polynomial of J> as an ideal of (9X>X and e (</) is its multiplicity there: in

particular, it is independent of L. Note that, in general, eL («/) depends on
the formal completion of X along Z and the pull-backs of J>,L to this

formal completion.

2.3. Classical geometric interpretation. Let Xr a P'1 be a

projective variety, L (9X (1), and A be a subspace of r (Pn, (9 (1)). Define LA
to be the linear subspace of P" given by s =* 0, s e A. Define J> A to be the
ideal sheaf generated by the sections s e A, i.e. J> A L is the subsheaf of L
generated by those sections and Z Supp {(9xj^f) X n LA is the set

of their base points.
If pA: P" — La -» P (A) Pm is the canonical projection, and n is the

blow-up of X along JA then there is a unique map q making the following
diagram commute:

res
X - Z P

*
O O S v./

% *
X + B BJA

Moreover, because sections of (9pm (1) pull back to sections of/^.Lonl
and are blown-up to sections ofL twisted by minus the exceptional divisor E,

(2-4) g*(<V,(l)) (7i* L)(-E).
Define pA(X),the image of X by the projection pA, to be [cycle (q (B))~] :

that is, q B)with multiplicity equal to the degree of B over q if these
have the same dimension and 0 otherwise. I claim

Proposition 2.5. eL (XA) deg X-degpA

Proof. If H is the divisor class of a hyperplane section on X, then

deg X =(H 0 n.l.c. (Z (IPx(n)).
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By 2.4, q is defined by the linear system of divisors of the form n
1 (H) - F,

hence

deg Pa (x)(0_1 (H) -E)r)n.l.c

Finally, from its definition

eL(^A)n.l.c x(&x(n)l^"&x(n))
n.l.c. x("))- n.l.c. /(/"^(n))

degX-degpA(X)

This proof brings out the geometry even more clearly. If H1, Hr
are generic hyperplanes in Pr then

deg (X) # (X n H1 n n i/r), (# denoting cardinality)

As the /// specialize to hyperplanes /// of the form ^ 0, s g A (remaining
otherwise generic) the points in this intersection specialize to either:

i) points outside Z: these points correspond to points in the intersection of
Im (q) with r generic hyperplanes on P", and each of these is the specialization

of deg q of the original points i.e. deg pA (X) points specialize
in this way

ii) points in Z : eL {JA) measures the number of points which specialize
in this way.

For example, if X1 c P2 is a curve of degree d, y (0, 0, 1) is on X and
A kX0 + kXu then | Z | { y }, pA (x0, xl9 x2) (x0, and the

picture is:

pi
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Thus pA (X) (dP1), where a is the degree of the covering/?; a generic line

meets X in d points and as this line specializes to a non-tangent line through

3; it meets X at y on mult y (X) eL (JA) points and meets X away from y in

d - eL (/A) a points.
The following technical facts will be useful in calculating the the

invariants eL {J>).

Proposition 2.6. a) If in the situation ofProposition 2.1) L and J> L

are generated by their sections then h° (LnIJ"Ln) - eL (J) - O (// x).

(Thus we can calculate eL (J) from the dimensions of spaces of sections.)

b) Suppose, in addition, we are given a diagram

X ^ X0 =/-1(0)

/
Spec (Ä) 3 0

where f isproper, and afinite dimensional vector space W c= T (X,JL) which

i) generates J L
^

ii) defines a closed immersion X — X0 P (W)

Then the dimensions of the kernel and cokernel of the map

(T (X, L")/^-submodule generated by the image of W®n -> T (.LnjJnLn)

are both O fif'1).

Proof. The idea in a) is to show that hl (Ln/Jn Ln) 0(nr~1),
i ^ 1. We first remark that is a compactification X of X over which L
extends to a line bundle L such that

i) L is generated by its sections

ii) some W c= T (X, L) which generates J L extends to a
W c T(X,L).

Indeed, on any compactification X, there exists a coherent sheaf such that
<F\ x L and has properties i) and ii), and the pullback of to the

blow-up B^l (X) is a line bundle with these properties: so we might as well
replace X by (X). Then if we take an ideal sheaf J such that ITgenerates
J L, ß J J' where is supported on X - X only, and it suffices
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to show ti (I"//"!") O (rf-1) i ^ 1 since Ln/jnLn ^ Ln/JnLn © Ln/J"\ Ln

so this bounds hl (Ln/jPnLn). To do this, it suffices, in turn, to bound

hfX, Ln) and h1 (X, Jn. Ln) ti (By (X), L(-E)®n) (where E is the

exceptional divisor on Bj(X)). These bounds follow from:

Lemma 2.7. If Xr is proper over k and L is a line bundle on X
generated by its sections, then hl (L®n) O (nr~1), i ^ 1.

Proof Let X0 be the image of X in Pn under the map given by the
sections of L. Then L n* (0Xq (1)) and

H'1 (Z, L®n). H{ (Z, ti* ((9Xq (n)))

S H°(X0, (R%ßxo)®(9Xo(n))
for n large.

The last isomorphism follows from first applying the Leray spectral sequence,
and then noting that all the terms involving higher cohomology groups
vanish for large n, by the ampleness of ®Xo (1). But if p e Supp Rln^OXQ

for i 1, the fibre 7t-1 (p) has positive dimension, hence dim Supp Rln:{i(9Xo

^ r — 1 which gives the desired O ff'1) bound on the dimension of the

last space.
A suitable compactification and an argument like that in the proof of a),

reduce the part of the statement of b) about the cokernel to bounding an
h1 {Jn. Ln) and this is accompanied as in a) by a blow-up and the lemma.

The procedure for dealing with the kernel is somewhat different: What we

want to control is the dimension

(H° {JnLn)jA-submodule generated by the image of W®n)

That is to say, for n > 0, the dimension of :

(H° (B (Z), %*Ln (-n£))/^-submodule generated by image of W®n)

Let B Bjp (Z) and q be the proper, birational map B 1+Bf a P" x Spec A

induced by W. Then q* (1)) 7r*L (-E) and for large ft, we have

H° (B, Ln (-nE)) g H° {B\ q* (0B) ® 0B. (nj)

j
^4-submodule

generated by
the image of W®n

U

H° (B', &B. («))



— 59 —

The cokernel of the inclusion on the right is just H° (B', (0B)/0B' (/?)).

But the support of this last sheaf is proper over 0 e Spec A, hence of dimension

less than r, so a final application of the lemma completes the

proof.

2.8. Fix : Xr c P" a projective variety,

X0, Xn coordinates on P",

<PX the Chow form of X,

>o 0

k(t) t k
Po — Pi ^ pn fe 0

0 tpn

k chosen so that this is a 1-PS of SL (jt + 1), i.e. k - YjPiln+ 1-

We define an ideal sheaf J cz (PxxAi by

^ - [®x (1) ® ^ai] subsheaf generated by { tPiXt } i 0, n

Remarks, i) From an examination of the generators of J, one sees

that the support of the subscheme Z (9XxKi\J> is concentrated over
0 g A1; if we normalize the p-L so that pn — 0 then the support of J also
lies over the section Xn 0 in X.

ii) Consider the weighted flag:

(Xi ..r~Xn=0) cz (X2 =ZB 0) cz (Xn 0)

L0

weight po weight p1 weight pn_1

The subscheme Z looks roughly like a union of ptth-order normal
neighborhoods of Lt n X. It is easily seen to depend only on the weighted flag
and not on the splitting defined by k.
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A1

iii) Roughly speaking, e&Al 0ox(i) (^)> which we will denote e Çf)
measures the degree of contact of this weighted flag with Xx). The multiplicity
of J> can be expected to get bigger, for example, if L0 becomes a more
singular point of X or if Ln_l oscillates to X to higher degree. The main
theorem of this chapter makes this more precise:

Theorem 2.9. In the situation of 2.8, <PX is stable (resp. : semi-stable)
with respect to X if and only if:

Proof We begin with a definition.

Definition 2.10. If \i\ Gm -> GL (W) is a representation of Gm and

Wt is the eigenspace where Gm acts by the character t\ then the ß-weight

of W is Yj i - d If w e Wt then we say i is the ß-weight of w.

0 It seems to be a general fact of life that one must go up to some (r +1) dimensional
variety—here X x A1—to measure such a contact on an r-dimensional variety.

CO

i — — oo



— 61 —

1) The limit cycle. If A/A(t> is the image of by (t), then taking

lim XH,) gives a scheme XA(,)> and an underlying cycle X, both of which
*--> 0 b

are fixed by X. Moreover, $xm (<Px)m so if <PX £ <Px,i where
i a

<PX i is the component of <PX in the Ith weight space; then

®xm - Z ®x:,
i — a

ta [<*>*,« +1 (other terms)]

Hence, $x L>Xa and a is the A-weight of &x. By definition, <PX is stable

(resp : semi-stable) with respect to A if and only if a < 0 (resp : a ^ 0) or
equivalently if and only if the 2-weight of <PX is <0 (resp: ^ 0).

2) The next step is to connect this weight with a Hilbert polynomial;
this is done by:

Proposition 2.11. Let Vr c P be fixed by a 1-PS A of SL (n + 1),

let I be the homogeneous ideal of V and let Rn (k [x0, Xn]/I)n (i.e.
00

V Proj © Rn)). Let av be the A-weight of &v and r„ be the A-weight
n=0

of Rn. Then for large n, if is represented by a polynomial in n of degree at
most (r+1) with n.l.c. av.

Proof a) Assume V is linear. In suitable coordinates, we can write
~ ta° 0

V — V (Xr+l9..., Xn) and A{t) Then in the notation

0 f*
of 1.16, the Chow form of V is the monomial

ç*V det(uy),ij- 0,

r
Hence <Py <LV and has weight Yj ai• On the other hand the A-weight of

i 0

Rn depends only on ci0 ar, is symmetric in these weights, and is linear in
r

the vector (a0, ar),hencedepends only on X By considering the case
i 0

a0 ar we see that



— 62 —

v nn fn\
r„—( 2, <0 dim Rn av

r+ 1
,- o + 1 Vv

which is certainly of the form claimed.

b) V is a positive cycle of linear spaces. Here it is more convenient to
consider the ideal I instead of V. By noetherian induction, we can suppose
the claim proven for all A-fixed ideals /' ^ /. Then if V - let
the ideal of Lly and choose an a e k [X] - I which is a ^-eigenvector of
weight, say, w and such that Jxa <=. I. Now look at the exact sequence:

0 -> a + /// k [x]// -> k [x]// +a 0

The claim is true for / + ß by the noetherian induction. If I' {f\afel)
ZD Jx => /, then via the shift of weights by w, ß + /// k [x]/I'; but this
shift changes the A-weight by an amount w dim [{k [x]//')J) O (nr),
hence does not affect the leading coefficient of the A-weight. The claim for
/', which also follows from the noetherian induction, thus proves the claim
for /.

c) Reduction to case b). Recall the Borel fixed point theorem: if G is a

connected solvable algebraic group acting on a projective variety W, then

there is a fixed point on Og (y) for every y eW. Let [V] be the associated

point of V in HilbPn and consider the orbit of [V] under the action of a

maximal torus T <= SL(n+l) containing X(t). Let [V0] be a T-invariant

point in 0T ([V]). Then V0 is a sum of linear spaces, since these are the

only T-invariant subvarieties of Pw. If we decompose <PV by <PV J)
a

where a runs over the characters of T and <Pav is the part of <PV on which T
acts with weight a, then for any x eT,<PTv ^ c\ <Py for suitable constants

a

cTa. Since <PVo is both T-invariant and a limit of forms <Prv, x e T, <PV{)

for some a. Moreover since V is a A-invariant point, all the characters a

appearing in the decomposition of must have the same value on A,

hence the A-weight of $Fo is the A-weight of $v.
It remains only to compare the homogeneous coordinate rings. Now

V and V0 are members of a flat family Vt, t e S for some connected parameter

space S9 so that if n > 0, H° (Vt, (9Vt («)) are the fibres of a vector bundle

over S. This means that the A-action on these fibres varies continuously,
hence that the A-weights of all the fibres are equal. Now the claim for V

follows from b).
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Remark. The relation between Chow forms and Hilbert points in c)

is really much more general: in fact, Knudsen [12] has shown that there is

a canonical isomorphism of 1-dimensional vector spaces k <PV [(r+ l)st

"differences"—formed via ®—of successive spaces in the sequence
Adim RnR„], and it is possible to base the whole proof of 2.11 on this.

3) Next we will see how to obtain XA(0) by blowing up JC Consider the

map
Ax : GmxI-^P

(f, X.) r-> X (i (x).

If the embedding of Xis defined by s0, sn e T [X, 0X (1)] and the action of
n

a (t) is by (a0,a„)i-> f°a0,fnâ„)with ^ rx Sä Sä and £
1 0

0 (i.e. (0, 0, 1) is an attractive fixed point and (1, 0, 0) is a repulsive
fixed point), then A*x (Xx) Now ry is a unit on Gm x X, so

changing the identification A* (0pn (1)) 0Gm ® (0 ^ un^ we

can assume A* (Xx) tpiSi where pt rt — y is normalized as in 2.8 so

that pn ^ 0. Then Ax "extends" to a rational map A1 x X P" which is

defined by the section { tPist }ef (A1 x X,p*Ox (1). J is just the ideal
sheaf these generate in $Aixx and Z is just the set of base points of the
rational map. Blowing up along J gives the picture

E
exceptional

divisor

P2 /
X P

where the morphism A is defined by the sections {tPiSi} in r [B, (p2n)*
(0(1 ))(-£)]. Now Im (A) is the closed subscheme of A1 x P" given by

m

Proj © where
m 0

B Bj(Ax

'/ \A1 x X

/
A1 x P"

Pi
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p [t]-submodule of r (X, & ®kk [r]
(2.12) Km —

|_generated by m degree monomials in { tPist }_

In fact, Im A is flat over A1, because of :

Lemma 2.13. Let S be a non-singular curve, X flat over S and f:X
-» Y be a proper map over S. Then the scheme (f(X), $y/ker/*) is flat
over S.

Proof. We may as well suppose S Spec R; and then this amounts to
showing the $y/ker/* has no ^-torsion: if a e0y/ker/*, r e R, then

r a 0 => r .f* a ** 0 => f* a 0 => a 0.

In particular, we see that Xx{0) is the fibre of Im A over t 0, i.e. XÀ(0)
m

Proj © RJtRJ.
m- 0

4) The proof is completed by making precise the relation between «/
and the 2-weight of One must be careful however because there are two
Gm-actions on RjtRm, that given by the identification RfitR^ — © (trist) k,
which is just 2, and that given by the identification RJtRx © k\
call this action p. The weights of p on RJtRm are just those of 2 translated

by my. By Proposition 2.11

2-weight of <Px (2-weight of RJtRm)

n.l.c. (^-weight of RJtRm + ym dim (RJtRm))

(r + 1 deg X " \
n.l.c. (ju-weight of RJtRJ - —— pt

\ n + 1 j 0 J

using y Y, Pi and
n + 1

mr
dim RJtRJ(deg Xx(0)) — + lower terms

r
(deg Jf) mr

+ lower terms.
r

A droll lemma allows us to re-express the p-weight of RjtRm.

Lemma 2.14. Let W be a k-vector space and let Gm act by p on W

with weights pn X p;i_1 ^ p0 0. Let Wt be the eigenspace of weight

pi and let W* be the k [t]-submodule of W ® k [t] generated by © tPiWt
Then dim (k [t] ® W/W*) p-weight of W*/tW*.
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Recalling the definition of Rm (2.12), and applying this to the ^-action on
RJtRm, we see that the /^-weight of RjtRm is just: dim(T (X, (9 (m))
®kk [t]/Rm). But the sections { tPiSi} whose mth tensor powers generate
Rm, also generate «/ p*2 (^x(i>) so by a) and b) of Proposition 2.6, this
last dimension can be used to calculate e {J). Putting all this together, we
see that:

&x is stable with respect to X

<=> 2-weight of $x < 0

(r+l) "

- 7-7T;degX Y <0
+1) ,;=o

which, with the analogous statement for semi-stability, is our theorem.

2.15. Interpretation via reduced degree. If Xr c= Pn is a variety,
its reduced degree is defined to be:

L'Enseignement mathém., t. XXIII, fasc. 1-2.
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red. deg X)dCg X
n + 1 — r

A very old theorem says that if X is not contained in any hyperplane then
red. deg (A) ^ 1. Reduced degree measures, in some sense, how compli-
catedly X sits in PM, and there are classical classifications of varieties with
small reduced degree. For example if X has reduced degree 1 and is not
contained in any hyperplane then X is either

a) a quadric hypersurface

b) the Veronese surface in P5 or a cone over it
r

c) a rational scroll: X P © 0pi (nj) cz P^, nt > 0
i 0

r
where N £ (nt + 1) — 1, or a cone over it. (This is called a scroll because

i=0
the fibres P'"1 of X over are linearly embedded.)

Some other facts about reduced degree are:

i) canonical curves, K3-surfaces and Fano 3-folds have red. deg 2;

ii) all non-ruled surfaces and all special curves have red. deg ^ 2. (For
special curves, this is just a restatement of Clifford's theorem.)

iii) for ample L on X\ the embedding by L®r has reduced degree

asymptotic to r as n co ;

iv) red-deg is preserved under taking of proper hyperplane sections.

It would be very interesting to know whether almost all 3-folds (in a sense

similar to that of ii) for surfaces) have red. deg ^ 2 + s. The following
definition is introduced only tentatively as a means of linking the present
ideas to older ideas (e.g. Albanese's method to simplify singularities of
varieties):

2.16. Definition. A variety Xr cz PM is linearly stable (resp. linearly
semi-stable) if, whenever pn~m~1 c P" is a linear space such that the image

cycle pL (X) of X under the projection pL : P" — L -> Pm has dimension r,
then red deg pL (X) > red deg X (resp. red-degpL (X) ^ red deg X).

Attention: pL is allowed to be finite to 1, and which case pL (X) must be

taken to be the image cycle. Linear stability is a property of the linear

system embedding X; if Xr <=. Pw is embedded by F (X, L), then X linearly
stable means that for all subspaces A c: r (X,L)
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àegPiXX)>deg2f

dim A — r n + 1 — r

or equivalently, by applying Proposition 2.5,

deg X
e (^a) < (codim A)

n -h 1 — r

Examples, i) when X is a curve of genus 0, it is linearly semi-stable but
not stable. When g ^ 1, Clifford's theorem shows that X is linearly stable
whenever it is embedded by a complete non-special linear system (see § 4

below).

ii) P2 is linearly unstable when embedded by (9 (n), n St 3 because it
projects to the Veronese surface. In view of the next proposition, a very
interesting problem is that of finding large classes of linearly (semi)-stable
surfaces.

(It may, however, turn out that linear stability is really too strong, or
unpredictable, a property for surfaces in which case this Proposition is not
very interesting

Proposition 2.17. Fix Xr c Pn, let C be any smooth curve and let L
be an ample line bundle on C. Let : C x X PN(l) be the embedding
defined by { Sj ® Xt) where { Sj } is a basis of T (L®1) and Xt
e F (V, 0X (1)) are the homogeneous coordinates. If Ft (Cx X) is linearly
semi-stable for all large z, then Xr is Chow-semi-stable.

Proof. Choose a 1-PS: X{t)

tp o

0

0

tPn

S P i
iüT

as in (2.8).
Choose a point p eCanisomorphism Lp s &p and an i large enough that
L®' is very ample and L0i - p0p) is non-special. Then the map

© r(c,L®i).xl © \ß>PJC!JißM Xi
1=1 1=0

n
is surjective. Let A1 be the inverse image of © [0^c/^p?c) ' xt\ under

1 0

this map and let J'A <= &CxX be the induced ideal. Since all the L®; are
trivial near p and has support on the fibre of x C over P, the ideals



JA are independent of /; we denote this ideal by JA. The hypothesis says
that for large i

deg(CxI)
e (JA ä 7-77— codim yl

(n + 1) (/î (L1) — r — 1)

(r +1) deg XdegL®' ^~
(n + 1) (deg L®' — gr + 1) — r — 1

and letting z -> oo,

e
+ £
n + 1

J O

But C x X along p x X is formally isomorphic to A1 x I along 0 x X
with corresponding J 'A s, so by Theorem 2.9., X is Chow-semi-stable.

§ 3. Effect of Singular Points on Stability

We begin with an application of Theorem 2.9.

Proposition 3.1. Let X1 cz Pn be a curve with no embedded components
such that deg X/n + 1 < 8/7. If X is Chow-semi-stable, then X has at
most ordinary double points.

Remarks, i) When n 2, degJT/zz + l < 8/7 deg X < 4 and the

proposition confirms what we have seen in 1.10 and 1.11

ii) Suppose L is ample on l1 and Xm c i$ the embedding of X
defined by T (X,L®m). By Riemann-Roch, deg XJN(m) -» 1 as m -» oo, hence :

Corollary 3.2. v4zz asymptotically stable curve X has at most ordinary
double points.

In particular, if X a P2 has degree ^ 4 and has one ordinary cusp,
then, in P2, X is stable but when re-embedded in high enough space, X is

unstable! The fact that this surprising flip happens was discovered by
D. Gieseker and came as an amazing revelation to me, as I had previously
assumed without proof the opposite.

iii) We will see in Proposition 3.14 that the constant 8/7 is best possible.

Proofof3.1. We note first that a semi-stable X of any dimension cannot
be contained in a hyperplane : if X a V (X0), then X has only positive
weights with respect to the 1-PS
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