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§ 4. Asymptotic Stability of Canonically Polarized Curves

The chief difficulty of using the numerical criterion of Theorem 2.9

to prove the stability of a projective variety is that it is necessary to look
inside &Xxai to compute the multiplicity eL («/). To circumvent this

difficulty, we will construct an upper bound on eL (ß) in terms of data on X
alone. For curves, this bound involves only the multiplicities of ideals

ß <= 0X, but for higher dimensional varieties—in particular, surfaces—it

requires a theory of mixed multiplicities, i.e. multiplicities for several ideals

simultaneously. To motivate the global theory, we will first describe what
happens in the local case. Here the basic ideas were introduced by Teissier
and Rissler [22]. Recall that if (9 is a local ring of dimension r with infinite
residue field and 7 is an ideal of finite colength in it then whenever fu ...fr
are sufficiently generic elements of 7, e (7) e ((/i, ...,/r)). This suggests

Definition 4.1. If (9r is a local ring and Ilf..., Ir are ideals offinite
colength in (9, the mixed multiplicity of the It is defined by

e (Ii,Ir)e(C/\,

where ft e f is a sufficiently generic element. (The set of integers e ((/j, ...,/r))
has some minimal element and a choice (/l5 is sufficiently generic if
the minimum is attained for these f.)

The basic property of these multiplicities is :

Proposition 4.2. Let Iu be ideals offinite colength of a local

ring (9r and let

Pr(mu...,mk)E =2—
»i r II (ri 0

where l\ri] indicates that IL appears rt times. Then

i) I dim (ßj fi u •••> mk) I °(Œmi)r~1)
i 1

ii) There exists a polynomial of total degree r

P (ml9 mk) Pr (mu mk) + lower order terms

and an N0 such that if mt^ N0 for all z, then

dim (<P/n IT')
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Proof. See Teissier and Rissler [22].

Using this we obtain the estimate:

Proposition 4.3. Let I a (9 [[?]] be an ideal offinite codimension and
1 let Ik= {ae(9 \atkel) ; then I0 Ç f <= £ IN (9, N > 0. Then
* for all sequences 0 r0 < rx < < r{ N,

e(I)~ S (rfc+l~rfe) E 1]) •

k 0 j 0

Proof Since / :d ® tri Ir.

ln => + (P) + rr'1 In(tn(9 + tri + 1 (9 + ...+t2ri~10)

+ + (tin~1)n (9 + + tnn~1 (9)

+ rri(tnn&±...+tin-1)n+r2-1®) +rr;1ir2(t(n-1)ri+r2(9 +
[ + +/^1(r,-ïff + +/^(r(/î~1)rz-1+r^ +

+... + r*0 [[>]].
whence

dim (0[[t ]]//") E E dim ((9/(1rl~l .i;k+1))
k=0 i=0

I n—lf-r ^
(4.4) E (>*+i -'"t) E

fc 0 i 0
E * iliL) (n ~ iy~jiJ+RtLA j (r -j) 1 ,fc+1 V

By Proposition 4.2 i) each remainder terms Rt is <9(/2r_i). Indeed, ii) of
4.2 says that except when i or n - i < N0, the Rt are all represented by a

polynomial of degree r — 1 so that we can obtain a uniform 0(//_1)
71 — I

estimate for the Rt; hence E <9 (/7r).
i 0

But the n.l.c. of the (r+l)st degree polynomial representing
dim (ß [[*]]//") is by definition e(7); so evaluating the n.l.c. of the sum
in (4.4) using the lemma below, gives the proposition.

/ (r — /) n~1
Lemma 4.5. nr+1 V («-i)r~j iJ + O (ur)

(r + 1) / 0

Proof. We can reexpress the left hand side in terms of the ^-function as

tj(l-ty-jdt] nr+1,_r+1
L ni "r+1 ß O's r —j) n -(r +1)
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and the right hand side is just another expression for nr+i times this integral
as a Riemann sum plus error term.

To globalize these ideas we combine them with some results of Snapper
[5, 21].

Definition 4.6. Let Xr be a variety, L be a line bundle on X and

Ju be ideals on (9X such that supp ((9xj,Is proper. Choose a

compactification X of X on which L extends to a line bundle L and let
7i : B -» X be the blowing up of X along so n~1 C^f)
Let n*L (9b (D). We define

(Z)r) - ((D-£i) (D

We omit the check that this definition is independent of the choice of X
and L.

4.7. Classical geometric interpretation. Suppose X is a projective
variety, L (9X (1) and J> t. L is generated by a space of sections Wt
c= r (Pn, (9 (1)). If Hu Hr are generic hyperplanes of Pn, then # {H±

n n Hr n X) deg X. One sees by an argument like that of
Proposition 2.5, that as the Hi specialize to hyperplanes defined by elements of
W\ but otherwise generic, the number of points in H1 n n Hr n X
which specialize to a point in one of the W/s is just eL u Jr).

We can globalize Proposition 4.2 to give an interpretation of the mixed

multiplicity by Hilbert polynomials.

Proposition 4.8. i) Let Xr be a variety, L1? Ln be line bundles on X
and be ideals in (9X such that supp ((VfiJ' i) is proper for all i.

Then there is a polynomial P (n, m) of total degree r and an M0 such that

if mj X: M0 for all j then

x(X, ® LV I n JV- ® Lï)
i 1 7=1 i 1

Now suppose all the line bundles are the same, say L and let

Pr {m1,mj) E rTTl~\•••'m? -n (r, J)

rf^O
Then

ii) P Qfiïi] mu mt) Pr (ml5 mt) + lower order terms



iii) I x (V LImiIn -?V ®Llmi) - pr (»Ii, -, md I o E mj)'-1)
j 1

(i.e. we retain an estimate assuming only Yjmj ^arSe).

Proof. Making a suitable compactification of X will not alter the Euler

characteristics so we may assume X is compact.
Before proceeding we recall certain facts: If R © Rnil...,ni *s a

/ij^. o

multigraded ring we can form a scheme Proj (R) in the obvious way from
multi-homogeneous prime ideals. Quasi-coherent sheaves J5" on Proj (R)
correspond to multigraded i?-modules M © Mnit_tnv Suppose R0,..., 0

k a field and that i? is generated by the homogeneous pieces

R0, 0j i> o? *• • ; o- Then we get invertible sheaves Lu on Proj (R)
from the modules Mh where Mt (R with zth-grading shifted by 1), and
the multigraded variant of the F.A.C. vanishing theorem for higher coho-

mology says that if !F is a coherent sheaf on Proj (R) then

IV0 (0 L'ji)) I -'nr^°
if >0, all

Now if «/l5 Jk are ideal sheaves on X such that supp (ßxl^ j) is proper
for all z, let srf — © J1. Then $£ is a multigraded sheaf of

mjV^O

^-algebras. Let B Proj (sé); the blow up of X along Yl^j *s Just 71 : R
-> X. If Ej is the exceptional divisor corresponding to J> j, then when
(9b (— Y.mj Ej) coherent and when all the mj are large the relative versions
of the vanishing theorems say:

a) Rl71*(&(-£ mj Ej)) 0 i > 0

b) n.ßi-ZmjEj) [j
7 1

In any case,

c) supp i?1(0 (-J^mj Ej)) has dimension less than r, i > 0

d) ft* (#' (~ £ /7?./£/)) II-T* except on a set of dimension less

than r.
1

From a) and b) we deduce that when all the nij are large, X ai m
X {n*e(- Ej)). Thus, x (S WiU -?V X (X, 0 L?0

- x (5, 0 L"' (—Yj m j Ej))and both of these last Euler characteristics
polynomials of degree by Snapper [5,21], Now if 71* L &B(D),
his result also says,
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r n.\.c. (x(X, fp <g> Llm>)(£my)'(Dr) - (Q>y(Z> 0

rj^O

Srj-r 1I(0!)
0

which is ii). Fix an TV such that ii) holds when all rrij ^ TV.

Now suppose / is a proper subset of { 1, /}, J is its complement and
that values mi < N are fixed for all i e I. Let 7ij : Bj -> X be the blow up
of X along Y[ ^y As above we deduce that 3 N' depending on / and the

jeJ
mh i e / such that if my > TV', yje J, then

x (X, J? j^) X (*,, n^(-Z rny£y)).
iel jeJ

Then applying c) and d) we see that for some C, also depending on I and
the m i, i e /,

IxC- x(Bj,n•*?"(- I *SC( £ m/"1
iel jeJ jW

Combining this with the argument used in the proof of i) and ii) shows that
for some C' (depending on I and the mh i e I)

I x(X, L^/n - Pr(mi•••m,) I ^C'( X m/"1
jeJ

From ii), we get an estimate of this type with a uniform constant C, when
all the mj ^ TV. Since there are only finitely many sets I and for each of
these only finitely many choices for the mu iel with mt < TV we can combine

all these estimates to show: there exists M and C" such that if any
m i > M, then

I x (x, Llmi\ n Sp LImi) -Prim!,mt)^ C"(( £ 1)

j
which is iii).

The following analogue of Proposition 2.6 allows us to calculate mixed

multiplicities in terms of the dimensions of spaces of sections.

Proposition 4.9. If L, Jr1L,..., J> arc generated by their sections,
then

I x (x, L'-J/OI - dim (r (X, LImj)/r (X, J] \

o((llmjy-1)
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Proof. We give only a sketch of the proof which is very similar to that

of Proposition 2.6. One first shows as in the proof of 2.6a), that for

z > 0, hl (LImJ/Y[ Llmi) 0{QjnJ)r~1), hence that

I x (x, rp LImj) - dim r (x, i/w;/n \

0«ZmjY-1)

Using the long exact sequence

o-+r(x,n fV -*• r (x, LImJ)-> r L^/f] j'p LIra-0

this reduces the proposition to showing that

dim (coker (F{X,LXmi) -+f(X, LIm-</[] Jfi O V/hj)1' ')

and this is done exactly as in the proof of 2.6b). (Note that the extra hypotheses

of 2.6b) were not used in this part of the proof.)
The global form of Proposition 4.3 is:

Proposition 4.10. Given a variety X} a line bundle L on X and an
ideal J a (PXxAi with supp (Gx x Ai/«/) proper in X x (0), let { a
e (9x\tk a e J } so that c c c JN Lt L ® ®Ai,
Suppose that L, L «/ Li arc generated by their sections. Then for all
sequences 0 r0 < r1 < < rt X,

k=0 j 0

Proof By Proposition 4.9, eLl («/) is calculated by the order of growth
of

dim [H° (X x A1, Lï)/H° (X x A1, </". LJ)]

Exactly as in Proposition 4.3, for each n, we introduce using the r/s an
approximating ideal sheaf

00

S"^S'H= ©
k 0

where ^„_0 <= ./M <z c for JV > 0. Since

00

H°(X x A x,J?n.L\)=H°(X X A l,© H°(X,jrnk.L"),
k 0

it follows that
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dim (H°(XxA1, L'D/H0x A1,
00

^ X dim W"(X, L»)IH°(X,
k 0

The rest of the proof follows Proposition 4.3 exactly, using 4.9 again to
get the estimate

dim (H° (X, L")IH° (X,L"))

for x (L"/yrk. L"y

Corollary 4.11. If in Proposition 4.10, X is a curve

e

Cli_ (-0 ^ min [ E rk+k - rk). (eL + eL x))]
0 /•<) <ri... < N k 0

If X is a surface,

eLliS)
1

— min [ E (r*+1 - rk) • eL(+ eL Jrk++ (J'y)]
0 ro< < ri N k 0

We now show how this upper bound proves the asymptotic stability of
non-singular curves. It turns out that the estimate is, however, not sufficiently
sharp to prove the asymptotic stability of curves with ordinary double

points: more precisely, if J> is the ideal associated to a 1-PS À with
normalized weights pi then the estimate of the corollary may be greater than
2 deg X

Ŷ pi (cf. Theorem 2.9)
n + 1

Theorem 4.12. If C1 <= is a linearly stable (resp.: semi-stable)

curve, then C is Chow stable (resp.: semi-stable).

Proof. We prove the stable case; the semi-stable case follows by
replacing the strict inequalities in the proof by inequalities.

Fix coordinates X0, XN on and a 1-PS

tp o 0

m Po—Pi & ••• — — 0

t"N



Let J be the associated ideal on 0CxAi and let Jk c (9C be the ideal defined
N

by -fk.L= [sheaf generated by Xk,thusJ ^ tn J k. The

deg C
linear stability of Ximplies (cf. 2.16), e (Jk) <

N

k o

codim < Xk,..., XN >

deg C k

eL(*)

So using Corollary 4.11,

min [Z (Psk - Psk+i)+ eL i-^sk+i))]
0 sq<...< sk= N

deg C
Jj(psk-Psk+1) (sk + sk+l)< mm

0 s0< ...< sk= N
N

2 deg C *
In view of the Lemma below this implies eL (J) < - — }- Pi wlllcil m

X + 1 î o

turn implies C is stable by Theorem 2.9.

Lemma 4.13. If p0X± ^ pn 0, then

Proof Draw the Newton polygon of the points (/c, pk) as shown below

k

P

mm
0 so < < si n

The left hand side is just the area under this polygon so moving the points
above the polygon down onto it as shown, does not affect this expression.
Since this can only decrease the right hand side we may assume all the pt
are on this polygon. Then the left hand expression can be calculated with
sk k and it becomes
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1 1 ' 1

2
Po + Pi f -•' + Pn-l + ~ Pn — PO + • • • + Pn ~

^
+ P^

— Po + ••• + Pn 7~T (PO + ••• +Pn)
n + 1

since the Newton polygon is convex. But the last expression is just
n

(Po + + p„), hence the lemma.
n + 1

Theorem 4.14. // C c is a smooth curve embedded by T (C, L)
where L is a line bundle of degree d, then

i) d > 2g > 0 => C linearly stable,

ii) d^2g ^0 => C linearly semi-stable.

Combining this result with Theorem 4.13 gives the main theorem of this
section :

Theorem 4.15. If C is a smooth curve ofgenus g ^ 1 embedded by a

complete linear system of degree d > 2g then C is Chow-stable.

Proof of 4.14. Consider all morphisms cp: C-> P" for all n, where

(p (C) <4= hyperplane. Let us plot the locus of pairs (deg (p (C), n), where

cp (C) is counted with multiplicity if cp is not birational. Note that, if cp*@ (1)
is non-special, then by Riemann-Roch on C :

n dim H° (0Fn (1)) - 1 ^ dim H°(cp*(9 (1)) - 1

deg cp*(9{ 1) - g deg cp (C) - g

while if cp*(9 (1) is special, then by Clifford's Theorem on C:

n ^ dim H 0 (cp*(9 (1)) - 1

^ deg<p* (0(1)) _
dtgcp(C)

_ _ _ _



This gives us the diagram

: The reduced degree of cp (C) is just djn, the inverse of the slope of the

joining (0, 0) to the plotted point (/?, d). In case (i), by assumption, the

given curve C1 <r corresponds to a point on the upper bounding
segment, such as * in our picture. Any projection of C corresponds to a

point (n, d') in the shaded area with d' d,n' < n. From the diagram it
M is clear that the slope decreases, or the reduced degree increases: this is

H exactly what linear stability means. In case (ii), we allow the given curve C
j to correspond to the vertex (2g, g) of the boundary, or allow g 0, when

the boundary line is just n d. In these cases, the slope at least cannot
: increase, or the reduced degree cannot decrease under projection.

U Remark. Curves with ordinary double points are not, in general,
; linearly stable since projecting from a double point lowers the degree by 2,

1 but decreases the dimension of the ambient space by only 1. In fact, linear
bi stability is somewhat too strong a condition for most moduli problems:

| Chow stability for varieties of dimension r apparently allows points of
1 multiplicity up to (r+ 1) while linear stability allows only points of multi-
y plicity up to r
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