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4. ToHE GELFAND-NAIMARK REPRESENTATION THEOREM
FOR COMMUTATIVE B*-ALGEBRAS

Let us briefly recall the Gelfand theory of commutative Banach algebras
(for proofs of this preliminary material see [29, pp. 470-479]).

If A is a commutative Banach algebra denote by A4 the set of all nonzero
complex-valued linear functionals ¢ on A satisfying ¢ (xy) = ¢ (x) ¢ (»)

forall x, ye A. If ¢ € A, then | ¢ || < 1. For each x in A define a complex-

valued function x: 4 - C by x(¢) = ¢ (x) for p € 4; x is called the
Gelfand transform of x. R
The Gelfand topology on A 1s defined to be the weakest topology on A

under which all the functions x are continuous; it is the relative topology
A
which A inherits as a subset of the dual space 4’ with the weak*-topology.

The set 4 endowed with the Gelfand topology is called the structure space
of A.

If the algebra A has no identity element it is often convenient to adjoin
one. This can be done by considering the algebra A, of ordered pairs (x, )
with x € 4, A € C. The product in A4, is defined by (x, 1) (y, p) = (xy+ 41y
+ ux, Ap) and the involution by (x, 1)* = (x*, 1) if 4 is a *-algebra. Ident-
ifying x in A with (x, 0) in 4, we see that 4 is a maximal two-sided ideal in
A, with e = (0, 1) as identity. If 4 is actually a Banach algebra 4, can also
be made into a Banach algebra by extending the norm on A to A4,; for
example by defining || (x, ) | = | x| + | 4]. Every multiplicative linear
functional ¢ on a commutative Banach algebra A can be extended uniquely
to a multiplicative linear functional ¢, on 4, by setting ¢, ((x, 1)) = ¢ (x)
+ A for (x, 1) e A4,.

It follows from the Alaoglu theorem [29, p. 458] that the structure

space 4 of a commutative Banach algebra 4 is a locally compact Hausdorff
space which is compact if 4 has an identity. Furthermore the functions

A A

x on A vanish at infinity.
A

The mapping x — x, called the Gelfand representation, is an algebra

homomorphlsm of A into C, (A) Moreover, if | - || . denotes the sup-norm

on C, (A) then || x Hqc <« is continuous. In general, the
Gelfand representation is neither injective, surjective nor norm-preserving.
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But in the case of a commutative B*-algebra it will be seen to be an isometric
A

*-1somorphism of 4 onto C, (A4).
For this purpose we introduce the spectrum of an element x in an
algebra 4 with identity as the set o, (x) of all complex A such that x — 4
is not invertible in 4; if 4 has no identity define o, (x) = a4, (x). The
spectrum of an element x in a Banach algebra A4 is a compact subset of the
complex plane and furthermore the following basic Beurling-Gelfand

formula holds:
| x|, = lim

n— oo

<[ x|

where | x|, = sup {|A|: A€o, (x)} is called the spectral radius of x.
The multiplicative linear functionals on a commutative Banach algebra A
are related to the points in the spectrum of elements of A. If 1 # 0, then

lea 4 (x) if and only if there exists ¢ eA such that ¢ (x) = 1. Hence

x(A)u {0} =0,4,(x)u {0} and so “x“OC = | x|, <| x[. Now we
are ready to prove the Gelfand-Naimark representation theorem for
commutative B*-algebras.

A

THeEOREM 1. If A is a commutative B*-algebra, then x — x is an

isometric *-isomorphism of A onto C, (A).
Proof. We have seen that x — x is a homomorphism of 4 into C, (4).
The isometry of the involution in A4 is proved quite simply by the following

argument of Gelfand and Naimark [23]. For every h e A with A* = h the

B*-condition gives | 4> | = 2; by iteration | A2" | = || 2 |*" or | &
= | h** “1/2n and so | A| = | %], In particular | x*x|| = | x*x|,. Since
g (x*) = o (x) we see that |x*|, = | x[,. Hence using the submultipli-
cativity of the spectral radius on commuting elements | x* || - | x | = || x*x|
= | x*x |, <|x*|,| x|, = |x|(2, <H x”zandso | x* || <[ x |- Replacing
x by x* we also have | x| < ; Thus | x* H = | x[]. .

If 4 has an identity element we can now show that x — x is a *-map.
We first show by two different arguments that ¢ (k) is real for 7 € A with

h* = h and ¢ € A.

Aren’s argument [3]: Set z = h + ite for real ¢t. If ¢ (h) = a + if
with « and f real then ¢ (z) = a + i(f+1¢) and z*z = (h—ite) (h+ite)
= h* + t%e so that

o+ B+ =[o@ | <|z]* = [z <[ W] + 17
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or o + B> + 2Bt < | h* | for all real . Thus f = 0 and ¢ (4
is real. |

Fukamiya’s argument [21]: Recall that in a Banach algebra exp (x)
= X2 o x"/n!. Set u = exp (ih). Then u* = exp (—ih) and so u*u = e
= uu*. Since 1 = | wu| = |u|?> we see that |ul| =1=|u""].
Hence |u(¢) | < 1and |u™* (¢) | < 1 which implies | u (¢) | = 1. Since 1
= |u@]|=|¢ @] =|exp(i¢ (h)], it follows that ¢ (%) is real.

Now,if xe 4, thenx = 7 + ik withh = (x+x¥)/2and k = (x—x%*)/2i.

Since h* = h, k* = k, and x* = h — ik we have for every ¢ € 4,

x*) (@) = ¢(x*) = ¢ (h—ik) = ¢ (h+ik) = ¢ (x) = x ().
Thus (x*) = ;c\ ; 1.e. the Gelfand representation is a *-map. R
' Next assume that 4 has no identity element. Since every ¢ € A can be
extended to A, it suffices to show that the norm on A can be extended to a
B*-norm on A4,. Suppose A4 is a (not necessarily commutative) B*-algebra
with isometric involution. Observe that for every x € 4, = sup { || xy ||

Ix + Zel| = sup {|(x+2e)y|:yeda, |

Then A, i1s a Banach *-algebra in which A4 is 1sometrlca11y embedded as
a closed ideal of codimension one. Since the involution in A4 is isometric
we have

[x+20) y P = [ y* (x+20)* (x+1e) y | <[ (x+4e)* (x+Ao) | - ]| v |

Therefore || x + Ze |* <<|| (x+4e)* (x+Je) |; hence 4, is a B*-algebra

with isometric involution.
A

This shows that x — x is a *-map even if 4 has no identity. It is now
A

easily seen that x — x is an isometry. Indeed:
[P = lrx] =[x ]s = [0 o =[G x] =] xx].
= |12 o x| = |-
Summarizing, we have shown that the Gelfand representation is an

A

isometric *-isomorphism of A into C,(A4). Let B denote the range of

A

x — x. Then B 18 clearly a norm-closed subalgebra of CO (A) which separates

the points of A vanishes identically at no point of A and is closed under




— 160 —

complex conjugation. By the Stone-Weierstrass theorem [29, p. 151] we

conclude that B = C, (A) and hence that x — x is onto. Thus the proof
of the representation theorem for commutative B*-algebras is complete.

The reader who is interested in an unconventional proof of the preceding
theorem may consult Edward Nelson [38, p. 78]. Quite simple proofs of the
Gelfand-Naimark theorem in the special case of function algebras have
been given by Nelson Dunford and Jacob T. Schwartz [14, pp. 274-275]
and Karl E. Aubert [5].

5. THE GELFAND-NAIMARK THEOREM FOR ARBITRARY B*-ALGEBRAS

The proof of the representation theorem for an arbitrary B*-algebra is
much more involved than the commutative case and it will be divided into
several steps. After having established that the involution is continuous we
will introduce a new equivalent B*-norm with isometric involution. An
investigation of the unitary elements will show that the original norm on the
algebra coincides with this new norm. The representation of B*-algebras will
then easily be effected by the well known Gelfand-Naimark-Segal construc-
tion. General references for material in this section are [13], [37] and [43].

Step. 1. The involution in a B*-algebra A is continuous.

Proof [39, Lemma 1.3]. First we show that the set H(4) = {he A : h*
= h } of hermitian elements in A is closed. Let { , } be a convergent sequence
in H (A) whose limit is # + ik, with h, ke H (A). Since h, — h — ik we
may assume (by putting A4, for i, —h) that s, converges to ik. The spectral
mapping theorem for polynomials [43, p. 32] gives o, (b —Hy) = { )
—)*:Aeay(h,)};since | h| = | h|, and o, (h) is real (see the first part
of the proof of Theorem I, the Aren’s-Fukamiya arguments and recall

o, () = h(A) U{0}) we have

| hy — =sup {A* —1*:lea,(h,))}
<sup {A*:deay(h,)
Letting n — oo we obtain | — k* — k*|| < | k*|. Hence

sup {22 + 2% tdeo, (b)) <sup{A*:deo, (k)]

Choose peo, (k) such that pu®> = sup { 2> : Aeo, (k) }. Then p*> + u*
< u? so u = 0. It follows that | k| =|k|, = 0 and hence k& = 0.
This shows that H (A) is closed.
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