4. Ex-HOMOTOPY THEORY

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 23 (1977)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
23.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

$$
\left(t_{1} a_{1}^{\prime}, \ldots, t_{n} a_{n}^{\prime}\right) \quad\left(a_{i}^{\prime} \in A_{i}^{\prime}, t_{i} \in I\right)
$$

where $t_{1}^{2}+\ldots+t_{n}^{2}=1$. The radius vector through $\left(t_{1}, \ldots, t_{n}\right)$ meets the boundary of the n-cube I^{n} in a point $\left(x_{1}, \ldots, x_{n}\right)$, say, where at least one coordinate is equal to 1 . Thus a pointed G-homotopy equivalence

$$
l: \Sigma\left(A_{1}^{\prime} * \ldots * A_{n}^{\prime}\right) \rightarrow \Sigma A_{1}^{\prime} \wedge \ldots \wedge \Sigma A_{n}^{\prime}
$$

is given by

$$
l\left(\left(t_{1} a_{1}^{\prime}, \ldots, t_{n} a_{n}^{\prime}\right), s\right)=\left(\left(s x_{1}, a_{1}^{\prime}\right), \ldots,\left(s x_{n}, a_{n}^{\prime}\right)\right) .
$$

Clearly l is equivariant with respect to the action of the symmetric group on the suspension of the multiple join and on the multiple smash product.

In particular, take $G=O(m)$ and $\overline{A_{i}}=S^{m-1}$, for all i. Let u be a permutation of the multiple join and v the corresponding permutation of the multiple smash product. We distinguish cases according as to whether the degree of the permutation is even or odd. In the even case u is G-homotopic to the identity 1_{n} on the n-fold join, using elementary rotations as before, and hence v is pointed G-homotopic to the identity 1_{n} on the n-fold smash product. In the odd case it follows similarly that u is G-homotopic to $1_{n-1} * a$, hence v is pointed G-homotopic to $1_{n-1} \wedge \hat{a}$. Taking $n=3$, therefore, we see that the automorphisms which appear in (2.2) are trivial, in this example, and so

$$
\begin{equation*}
3\left[\Sigma_{*} l_{m},\left[\Sigma_{*} l_{m}, \Sigma_{*} l_{m}\right]\right]=0 \tag{3.3}
\end{equation*}
$$

in $\pi_{G}\left(S^{3 m+1}, S^{m+1}\right)$, where l_{m} denotes the pointed $O(m)$-homotopy class of the identity on S^{m}. It is easy to see, incidentally, that the Whitehead square $\left[\Sigma_{*} I_{m}, \Sigma_{*} l_{m}\right] \in \pi_{G}\left(S^{2 m+1}, S^{m+1}\right)$ is of infinite order, for all $m \geqslant 2$.

4. Ex-hомоtopy theory

For our second example of an alternative homotopy theory we take the category of ex-spaces (see [7] for details), which is an enlargement of the category of sectioned bundles mentioned earlier. We recall that, with regard to a given space X, an ex-space consists of a space E together with maps

$$
X \xrightarrow{\sigma} E \xrightarrow{\rho} X
$$

such that $\rho \sigma=1$. We refer to ρ as the projection, to σ as the section, and to (ρ, σ) as the ex-structure. Let $E_{i}(i=1,2)$ be an ex-space with ex-structure
$\left(\rho_{i}, \sigma_{i}\right)$. We describe a map $f: E_{1} \rightarrow E_{2}$ as an ex-map if. $f \sigma_{1}=\sigma_{2}, \rho_{2} f=\rho_{1}$, as shown in the following diagram.

In particular we refer to $c=\sigma_{2} \rho_{1}$ as the trivial ex-map. We also describe a homotopy $h_{t}: E_{1} \rightarrow E_{2}$ as an ex-homotopy if h_{t} is an ex-map throughout. The set of ex-homotopy classes of ex-maps is denoted by $\pi_{X}\left(E_{1}, E_{2}\right)$ and the class of the trivial ex-map by 0 .

In particular, suppose that E_{i} is a sectioned bundle with locally compact fibre. For each point $x \in X$ the fibre $\rho_{i}^{-1}(x)$ is equipped with basepoint $\sigma_{i}(x)$. Consider the fibre bundle $M=M_{X}\left(E_{1}, E_{2}\right)$ which is formed, in the usual way (see [2]) from the function-spaces of pointed maps $\rho_{1}^{-1}(x)$ $\rightarrow \rho_{2}^{-1}(x)$. To each ex-map $f: E_{1} \rightarrow E_{2}$ there corresponds a cross-section $f^{\prime}: X \rightarrow M$, where $f^{\prime}(x)$ is given by the restriction of f to the fibre over x, and conversely every such cross-section determines an ex-map. We shall exploit this correspondence in the next section.

Now let P be a principal G-bundle over X, where G is a topological group. For any pointed G-space A the pointed G-bundle $P_{\#} A$ can be regarded as an ex-space, and similarly with pointed G-maps. Thus $P_{\#}$ constitutes a functor from the category of pointed G-spaces to the category of ex-spaces, and determines a function

$$
P_{\nexists}: \pi_{G}\left(A_{1}, A_{2}\right) \rightarrow \pi_{X}\left(E_{1}, E_{2}\right),
$$

where $A_{i}(i=1,2)$ is a pointed G-space and $E_{i}=P_{\#} A_{i}$. Of course, in general $P_{\#}$ is neither injective nor surjective.

As we have seen in $\S 1$ a functor F in the category of pointed G-spaces defines a functor F in the category of sectioned G-bundles; in many cases such a functor can be extended to the category of ex-spaces. For example, the suspension functor Σ and the loop-space functor Ω can be so extended, also the binary functors product \times, wedge \vee, and smash \wedge. Similarly the notions of Hopf ex-space, etc.; can be introduced, following the standard formal procedure, so that $P_{\#}$, transforms Hopf G-spaces into Hopf exspaces, and so forth. Note that ΣE is cogroup-like and ΩE group-like, for any ex-space E.

The Whitehead product theory for ex-spaces has been worked out by Eggar [4]. His definition is such that if A, B, Y are as in $\S 2$ and $\alpha \in \pi_{G}$ $(\Sigma A, Y), \beta \in \pi_{G}(\Sigma B, Y)$ then

$$
\begin{equation*}
\left[P_{\#} \alpha, P_{\#} \beta\right]=P_{\#}[\alpha, \beta] \tag{4.1}
\end{equation*}
$$

in $\pi_{X}\left(\Sigma\left(P_{\#} A \wedge P_{\#} B\right), P_{\#} Y\right)$. Since we shall only be concerned with elements in the image of $P_{\#}$ we can introduce (4.1) as a plece of notation, without going into the details of Eggar's theory.

5. The register theorem

In this section we suppose that X is a finite simply-connected $C W$ complex, although the results obtained can no doubt be generalized. We define the register reg (X) of X to be the number of positive integers r such that, for some abelian group A, the cohomology group $H^{r}(X ; A)$ is non-trivial. If X is a sphere, for example, then $\operatorname{reg}(X)=1$.

Let $p: M \rightarrow X$ be a fibration with fibre N. If a cross-section $s: X \rightarrow M$ exists then $s p: M \rightarrow M$ is a fibre-preserving map which is constant on the fibre. Conversely if $k: M \rightarrow M$ is a fibre-preserving map which is nulhomotopic on the fibre then M admits a cross-section as shown by Noakes [11]. We use similar arguments to prove

Theorem (5.1). Let $k: M \rightarrow M$ be a fibre-preserving map such that $l: N \rightarrow N$ is nulhomotopic, where $l=k \mid N$, and let $s, t: X \rightarrow M$ be cross-sections. Then $k^{r} s$ and $k^{r} t$ are vertically homotopic, where $r=\operatorname{reg}(X)$.

The n-section $(n=0,1, \ldots)$ of the complex X is denoted by X^{n}. Since X is connected we have a vertical homotopy of s into t over X^{0}. This starts an induction. Suppose that for some $n \geqslant 1$ and some $q=q(n) \geqslant 1$ we have a vertical homotopy of $k^{q} s$ into $k^{q} t$ over X^{n-1}, so that the separation class

$$
d=d\left(k^{q} s, k^{q} t\right) \in H^{n}\left(X ; \pi_{n}(N)\right)
$$

is defined. If the cohomology group vanishes then $d=0$ and $k^{q} s \simeq k^{q} t$ over X^{n}. But in any case the induced endomorphism l_{*} of $\pi_{n}(N)$ is trivial, by hypothesis, and so d lies in the kernel of the coefficient endomorphism $l_{\#}$ determined by l_{*}. Therefore

$$
d\left(k^{q+1} s, k^{q+1} t\right)=l_{\#} d=0,
$$

