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ON CAYLEY'S EXPLICIT SOLUTION TO PONCELET'S PORISM 1

by Phillip Griffiths 2 and Joseph Harris 3

Let C and D be two smooth conics generally situated in the projective
plane. The classical problem of Poncelet is to determine if there is a closed

polygon inscribed in C and circumscribed about D. His beautiful result is

that there is one such if, and only if, there are infinitely many. More
precisely, if we let x denote a point of C and £ a tangent line to D, and if we
make the construction

(x,o ->(u, o-+(*vr)
as depicted by Figure 1

Figure 1

then Poncelet's theorem states : The requirement that the nth iterate of this
construction give us back (x, f) is independent of the initial data.

Following Poncelet's original synthetic proof, Jacobi gave in 1835 an
analytic argument based on (to us) elaborate formulae from the theory of

r) Presented at the Colloquium on Topology and Algebra, April 1977, Zurich.
2) Research partially supported by NSF Grant MCS 72-05154
3) NSF Predoctoral Fellow.
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elliptic functions. In a recent paper *) we gave a "modern" algebro-geo-
metric version of Jacobi's proof together with an extension of the Poncelet
theorem to 3-space. In that paper we stated that it seemed (to us) difficult
to find the explicit conditions for Poncelet's porism 2) to hold. In the interim
Marcel Berger called to our attention a series of papers by Cayley 3) on
exactly this question. Cayley's method was again based on complicated
identities from elliptic functions, but his final result was quite simple. So

in this paper we shall give an algebro-geometric proof of Cayley's theorem,
one which yields a rather elegant explicit formula that a point on an elliptic
curve be of finite order n (c.f. the end of §1 below). When applied to the
Poncelet problem the result is this:

Let C (x) 0, D (x) 0 be the quadratic equations in x [x0, xi? x2]
which define C, D respectively, and consider the expansion

x 'deUf C+D) A0 +Axt + A2t2 "+

of the square root of the determinant of the quadratic form t C (x) + D (x).
Then the Poncelet construction yields a finite polygon of n sides (with
arbitrary starting data) if and only if

Am +1

Ä3

1m+ 1

^2m

Â

0 n 2m + 1, or

m+ 1

0 n 2 m

It is our pleasure to thank Marcel Berger for pointing out to us the

Cayley references, which he found discussed extensively in the book "Les

Coniques" by Henri Lebesgue.

2) A Poncelet Theorem in Space, to appear in Comment. Math. Helvitici.
2) This word appears in the classical literature on the Poncelet theorem. According

to the Random House Dictionary, a porism is "a proposition affirming the possibility of
finding such conditions as will render a certain problem indeterminate, or capable of
innumerable solutions".

3) The references to Cayley are given in a footnote to our paperx).
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1. Points of finite order on elliptic curves

Let E be an elliptic curve over the complex numbers with origin o. In
practice E will have various realizations as an algebraic curve defined by

polynomial equations in projective space; e.g., as a plane cubic, the
intersection of two quadrics in P3, etc. All of these projective models are bira-
tionally isomorphic to the given curve E. It is well known that E admits a

commutative group law with o being the identity, and we are interested in
the points p of finite order n defined by

np o

where np p + + p (n times). Specifically, we pose the question of
finding a projective model of E relative to which these points have a simple
explicit description.

From a complex-analytic point of view we may realize E as the Riemann
surface

E C\A

obtained by factoring the complex w-plane by a lattice A with u 0 projecting

onto the origin o; this is a consequence of Abel's theorem1). The

group law on E is obtained from the additive structure on C, and so if
u0 g C projects onto p eE the finite order condition is

(1) nu0 0 modulo A

In particular there are n2 points of finite order n on E corresponding to the
points of

1

- A.
n

Our problem may be generalized to that of giving projective meaning to
the equation

(2) ux + + un 0 modulo A

which specializes to (1) when the ut tend together. Here again the basic step
is the following variant of Abel's theorem 2) ; Given uh vt g C (z 1, n)

x) This is the classical version of Abel's theorem used in 1).
2) C.f. L. Ahlfors, Complex Analysis, McGraw-Hill (New York), Exercise 2 on

page 267. This may be thought of as providing a converse to the classical Abel's theorem.

L'Enseignement mathém., t. XXIV, fasc. 1-2. 3
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there is an entire meromorphic function f{u) with period lattice A and

having zeroes at ut + A and poles at vt + A if and only if
uA + + un ~ v1 + + vn modulo A

It follows that the vector space H° {f)E ([wo])) of rational functions on E
having a pole of order at most n at o, or equivalently the entire meromorphic
functions /(u) which have period lattice A and a pole of order at most n at
u 0, has dimension n. If we choose a basis fl9 ...,/n for this vector space,
then for n ^ 3 the mapping

F(") [/i(w), •••,/„(«)]

induces a projective embedding

E -P"-1
whose image is easily proved to be a smooth algebraic curve of degree n.

Thus, for n 3 we have a plane cubic, for n 4 the intersection of two
quadrics in P3, etc. In general we shall call the image the normal elliptic
curve of degree n. According to Abel's theorem the hyperplane sections of
this curve, which are just the zeroes of functions /e H° (f)E ([wo])), are
characterized by uv + + un 0 modulo A. Put differently, the condition
(2) is equivalent to

(3) det ||/;(«;) II 0

expressing the failure of the points F (wt), F (u„) to be in general position.
If we denote by

/l(w) •••/»(")

WF (u)

fi(w) /»

fy-'Ku)

the Wronskian of the functionsf (u), then by letting the ut tend together the

condition (3) specializes to the equation

(4) WF(u) 0

characterizing the solutions to (1). Points satisfying (4) will be called hyper-

flexes, and what we have shown is that:
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The points oforder n on an elliptic curve are precisely the hyperflexes of
the normal elliptic curve of degree n.

Now we observe that the equation (4) is independent of the selection of
basis {f} and local coordinate u on E. To see therefore whether or not a

given point p is of finite order n we will make convenient choices. Namely,

we may choose a basis { 1 ,f(u) } for H° (&E ([2o])) such that f(p) 0.

In other words, the function / induces a 2-to-l map

(5) f:E
with pe/_1(0). It is well-known that the representation (5) has four
branch points, one of which is the point at infinity with /_1 (oo) o.

If we let x be the coordinate on P1 and a, b, c the finite branch points, then

E is conformally represented as the Riemann surface of the algebraic function

y/ (x — a) (x — b) (x — c).

Put another way, the plane cubic curve with affine equation

(6) y2 (x — a) (x — b) (x — c)

gives a projective model of E. Setting x — f (w), since the holomorphic
differential du is a constant multiple of dxjy it follows that, with a suitable

df(u)
normalization, 2y f (u)

du
Consequently the projective model

(6) of E is given by the mapping E P2 associated to the basis

{ 1,/(«),/' («) } of H° (f)E ([3o])). Of course,/(w) andf (u) are essentially
the Weierstrass functions. We recall that that their Laurent series around
u — 0 are

f(u) —+...

(7)

f'iu) -2
u3

+

Returning to our question of whether ~1 (0) is of finite order n,
we will use x / (u) as local coordinate around p and choose the functions
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(8)
5 xm; y, xy,xm 1y n 2m + 1

n 2m

1
5 X j

1, x, xm; xy, xm~2y

as basis for H° ((9E ([/?o])). That this choice gives a basis follows from the

Laurent series (7). It is now an easy matter to express the Wronskian equation

(4) at x 0.

dg (x)
We consider the case n 2m + 1 and let

dx
be the derivative of

g (x) evaluated at x 0. The choice of basis (8) facilitates the evaluation
dk (xl)

of the Wronskian. For example, from
dxk

0 for k > I the Wronskian

has the form

1 0

0 ml

\ 0 0

I 0 0

so that (4) is equivalent to

(9)

; dm+1y dm + 1{xy) dm+l(xm~1y)

j dxm+1 dxm+1 dxm+1

;
dm+2 dm+2(xy) dm+2(xm~1y)

1 dxm+2

1

dxm+2 dxm+2

1

d2my d2m(xy) d2m(xm"V)
j dx2m dx2m dx2m

0
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If the series expansion of y (x) is

then (9) is

y(x) S
k — 0

(m + 1)! Am+1(m + 1

(m+2)! +m+2 (m + 2)! +m + 1

(m + 1)! A2

(m + 2)\A 3

(2m)! +2m (2m)! AZm_1

In summary we have proved

(2m)! Am + 1

0,

(10) Let E be an elliptic curve with origin o and peE a given point.
Then p is of finite order n o the following condition is satisfied :
Choose rational functions x, y on E having poles of respective orders

2, 3 at o but which are regular elsewhere and with x (/?) 0. Then

there is an equation y2 (x — a) (x — b) (x — c) where a,b,c are
distinct and non-zero, and we write

y J (x-a)(x-by Akx
k 0

The finite order condition is

A2 ^3 • ' ' A m + 1

^3 A4 •• Am + 2

Am + 1 A m + 2 * •• ^2m

^3 a4 •• Am+1

A5 •• Am + i

| Am+1 Am+2 - ^2m

0, n 2 m + 1

0, n — 2n.



2. Application to the Poncelet problem

We consider two smooth conics C and D meeting transversely at four
points xt(i 0,1,2,3) of the projective plane P2. The dual conic D*
c P2* consists of the tangent lines £ to D, and we consider the incidence

correspondence
E c= C x D*

of pairs p (x, £) with x e £ (c.f. Figure 1 above). E is the basic algebraic
curve underlying the Poncelet construction, and we shall now examine it.

Referring again to Figure 1, there are on F a pair of involutions defined

by

i(x,0 =(*',{)
p (*',£)

whose composition j z" o z is given by j (x, Ç) (x\ £'). It follows that
Poncelet's construction beginning at p (x, gives a closed polygon of n
sides if, and only if,

jn(p) p
The mapping

(x, 0 -*x

represents E -> C as a two-sheeted branched covering whose branch points
are just the points xte C n D (i=0, 1, 2, 3), and the involution Ï
interchanges the sheets of this mapping (c.f. Figure 2 below). Similarly, i
interchanges the two sheets of the mapping E -> D* given by (x, Ç) -> ^ whose

branch points are the four bitangents to the pair of conics. It follows that
if we choose the origin to be o (x0, £0) in Figure 2 below
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then E is an elliptic curve; i.e. a smooth algebraic curve of genus one with a

marked point chosen as the identity for the group law. If we let p (x, |)
in Figure 2, then the Poncelet theorem is :

The Poncelet construction gives a closedpolygon of n sides with arbitrary
initial data q (x, f) e E if and only if
(11) np o

on the elliptic curve E.

Proof We want to show that (11) is equivalent to

jn(q) q

for an arbitrary point qeE. On the universal covering C ofE any involution
il having at least one fixed point lifts to

il (u) EE — u + v modulo A
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and i1 (o) o is equivalent to v e A. It follows that

i (u) — u — w modulo A

V (u) — u modulo A

so that

j (u) u + w modulo A
and consequently

jn (q) q o n w ~ 0 modulo A

Taking p to be the image of w in E C/A, we have

P j(o)

in Figure 2, which proves our assertion. Q.E.D.
To complete our story we want to combine this result with the explicit

formula (10). As in the introduction we consider the pencil of conics

Dt { t C (x) + D (x) 0 }

passing through the four base points xt. The determinant det (t C (x)
+ D (x)) is a cubic polynomial in t with non-zero roots tt (/ 1, 2, 3).

For t ^ ti we draw the tangent line to Dt through x0 meeting C in a unique
residual point x (t). It is easy to see that t tt is mapped into xt (with
suitable indexing), and since Dœ C the value t oo is mapped to x0.
Taking t 0 we see that t — 0 corresponds to x, so that in summary:

The elliptic curve E is birationally equivalent to the Riemann surface of
the algebraic function det (t C (x) + D (x)) with the origin o corresponding
to t oo and the point p (x, £) to one of the two points lying over

t 0.

Combining this with (10) gives Cayley's result stated in the introduction.

Reçu le 27 juin 1977)

Phillip Griffiths
Joseph Harris
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of Technology
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