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INTEGRAL REPRESENTATION THEOREMS
VIA BANACH ALGEBRAS

by George MALTESE

1. INTRODUCTION

Many classical integral representation theorems of analysis can be
obtained as special cases of the Choquet Representation Theorem [6],
[7], [14] or the Krein-Milman Theorem. The procedure involves the defini-
tion of a suitable convex compact set in some locally convex space and an
explicit description of the extreme points of this set. The latter is often a
non-trivial task, therefore it seems appropriate to develop alternative
methods which are general enough to yield a class of integral representation
theorems. In many situations in which an integral representation formula
is sought, there is a natural commutative Banach algebra inherent in the
background. For example in the case of Bochner’s theorem for positive
definite functions on a locally compact abelian group G, the natural Banach
algebra is the convolution algebra L' (G). In the case of the Schoenberg-
Eberlein theorem for Fourier-Stieltjes transforms on locally compact
abelian groups, the Banach algebra is again the convolution algebra. In
the case of the Spectral Theorem for a normal operator T' on a Hilbert
space #, the natural Banach algebra is the closed commutative * algebra
generated by 7 and the identity operator.

In this paper we show that the above mentioned theorems are all special
cases of a general result (Theorem 1) on the integral representation of
certain linear forms defined on commutative Banach algebras. Specialization
of Theorem 1 to symmetric Banach algebras yields a generalized version
(Theorem 2) of a result of Raikov [10] for positive functionals on such
algebras.

The proof of Theorem 1 is straight forward and its version for positive
functionals on involution algebras is classical [11]. The main point here
is the relative ease of application of Theorem 1 to a variety of situations.

T —
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2. INTEGRAL REPRESENTATION THEOREMS FOR LINEAR FUNCTIONALS

Let A be a commutative Banach algebra over C and let 4 denote the

locally compact space of regular maximal ideals of 4. For each x e 4 we -
A ' A

use x to denote the Gelfand-transform; i.e., x is the continuous mapping
from A to C defined by the relations:

A

x(m) = m(x) for med.

By C, (4) we shall denote the algebra of all complex-valued continuous
functions on 4 which vanish at infinity. For any subset &/ < A we shall

A A A
use the notation o/ to denote the set { x :x € & }. As usual || x ||, denotes &
the supremum norm.

THEOREM 1. Let f be a linear form on the complex commutative
Banach algebra 4 and let & be a linear subspace of 4. The following two
statements are equivalent: '

(1) There exists a constant M such that

| f®)|<M|x|, for every xe ..
(2) There exists a bounded complex Radon measure u on A4 such that
f () = [, x(m)du(m) for every xesf.

Proof. The implication (2) = (1) is clear with M = ||u|. We shali
prove (1) = (2). Define a mapping L : .;i — C by |
L) = /(.
It follows from (1) that L is well-defined, and that
| L(;) | < M”;\c | for every re o

and so L is continuous with || L || < M. Using the Hahn-Banach Theorem
we can extend L to a bounded linear form L, on C, (4) and by the Riesz
Representation Theorem we obtain the existence of a bounded complex
Radon measure pu on 4 such that
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|u] =1L] =]Lo| and
Lo (9) = [4@(m)du(m) for every ¢eCo(4).

In particular

fx) = L(;) = Ly (/;c) = |4 ;(m)du (m) for every xe /.

A
Remark : Suppose that 4 has an identity and that 4 is closed under
A
complex conjugation, then since 4 contains constants and separates the

. A
points of A, the Stone-WeierstraB Theorem implies that 4 is dense in
C (4), the algebra of all complex-valued continuous functions on the
compact Hausdorff space 4. If we impose these additional conditions on
A and if we take & = 4 in Theorem 1, we can conclude that in this case
the representing measure p is uniquely determined.

If the algebra 4 has a continuous involution, one can use Theorem 1
to derive an extended version of a theorem due to Raikov [10]. We proceed
to describe the situation.

Let A be a complex commutative Banach algebra with an isometric
involution * and a bounded approximate identity { u,} ;.4 i.e., a net
satisfying the following conditions:

[us]] <1 for each Aed,

|usx —x|| >0 for each xed.

A continuous positive functional on A4 is an element f € A4’ such that
f (x*x) >0 for every x € A. If fis a continuous positive functional on A
then the Cauchy-Schwarz inequality is valid (Dixmier [8, p. 23]) and this
implies the following facts:

f) = £
| f )P <] f| f(x*x) for every xed.
If the involution is symmetric, which means (x*)" = x for every x € 4
or, equivalently, that every m e 4 is a positive linear functional, then by

modifying a classical method of Gelfand-Raikov-Silov [10; p. 62] one can
prove that

| f x| <] f] “;”oo for every xeAd.
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As a corollary to Theorem 1 and the above discussion we obtain the
following extended theorem of Raikov [10; p. 64], see also Bucy-Maltese [4]):

THEOREM 2. Let A be a commutative Banach algebra with an iso-
metric involution which is symmetric. Suppose that A4 has a bounded
approximate identity and let f € A’ be a continuous positive functional.
Then there exists a unique positive Radon measure u on 4 such that || x ||

~ || £ || and )
fx) = [4x(m)du(m) for every xeAd.

Proof. From the above remarks we know that

1F@|<| 7] |x]. for every xeAd.

By Theorem 1 there exists a complex Radon measure p on 4 such that
Jnlf < f [l and

fx) = [4x(m)du(m) for every xecA.
This formula implies

5| <[5l [u] <]x] o] for every xea,
so that || f || < ||« || and hence || £ || = |||}

A
Since A is a self-adjoint subalgebra of C, (4) which separates points
A A
and for each m e 4 contains a function x such that x (m) # O (infact ')

there exists an element u, of the approximate identity such that u, (m) # 0),
the Stone-WeierstraB Theorem implies the uniqueness of the measure p.

A
The positivity of u also follows from the fact that 4 is dense in C, (4).
In fact if p is a non-negative function in C, (4), then p = | q |2 for some
g € C, (4). Choose a sequence { x, } in 4 such that ,

A
X, > (.

) If me A, then || m|| # 0 and by the assumption of symmetry m is a positive
functional. Therefore, as mentioned above, || m || = lim m (u,) so that there must exist
a

some ug of the approximate identity such that m (ug) # O.
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Since (x})"= x, it follows that (x,)"— g and hence
xax0) = |a|> =p.
This implies
f4p(m)du(m) = lim f, (xp%)") (m) du(m)

= lim f (xx,) >0,

so that u is a positive measure and this completes the proof.
If 4 has an identity, as is the case in Raikov’s original version, the above
proof can be somewhat simplified.

TueoreM 3 (Raikov). Let A be a complex commutative Banach
algebra with an identity e and with an isometric involution which is sym-
metric. If f is a continuous positive functional on 4, then there exists a
unique positive Radon measure y on 4 such that [[p || = || f || and

f(x) = j'A;(m) du(m) for every xeAd .

Proof. As above we know that

1f | <| 7] |*]o for every xed.

From Theorem 1 there exists a complex Radon measure pu on 4 such
that || || <|| £ || and

fx = SA;(m) du(m) for every xe€A.

Hence ||p||<||f|= f( =p@) <|[ul|l so that p()) =[]
which is enough to imply that p is positive. The uniqueness of p follows
as in the Remark to Theorem 1.

3. APPLICATIONS OF THE INTEGRAL REPRESENTATION THEOREMS

Application 1 (Bochner’s Theorem). Let G be a locally compact abelian

group and let G denote the (locally compact) character group. Denote

1’Enseignement mathém., t. XXV, fasc. 3-4. 19
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Haar measure on G by dt and the group algebra (with convolution as
multiplication) by L' (G).

Definition : A function p € L* (G) is said to be positive definite provided

[ [F@®)F(s)p(t—s)dtds >0 (
GG
for every Fe L! (G).

Usmg the natural involution F — F of L (G) defined by F (t)y = F ( - t)
we can rewrite the definition of positive definiteness as follows: p e L” (G)
is positive definite provided

j F*F O p(dt>0 for all FeL'(G).

For a positive definite function p ‘define the mapping P : L (G) - C
as follows:

P(F) =£ F(®p@)dt.

Therefore P is a continuous positive linear functional on the symmetric
involution algebra L' (G) such that ||P || = ||p||l,. By the discussion
preceding Theorem 2 and the fact that L* (G) has an approximate 1dent1ty,
we know that

|P(F)| <|P| |F|. for every FeL'(G),

A
where F is the Fourier-Gelfand transform. By Theorem 2 there exists a

unique positive Radon measure p on 4 (L' (G)) such that
P(F) = {41y F(Idu(I') for every FeL'(G).

It is classical that A (L' (G)) is homeomorphic to the locally compact

character group G under the correspondence I'<>y where

I'(F) = F(y) for every FeL'(G).

Therefore using the same symbol for the measure induced on G by u

under this identification, we obtain

P(F) = [sF()du() for every FeL!(G)

which implies
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[eFp@®dt = [5du() [eF )y (@ dr
= [6F (1) [ay(@®du(y) dt.

Since this holds for all Fe L' (G) we conclude that

p(t) = f4y(@®du(y) for almost all t.

This is, of course, the famous Bochner characterization of positive
definite functions ([5], \[6], [7], [10], [11], [16]).

Application 2 (A theorem of Schoenberg-Eberlein). A complex-
valued function y defined on the locally compact abelian group G is called
a Fourier-Stieltjes transform if there exists a bounded Radon measure vy

defined on the dual group G such that

() = jé\y—(?) dv,(y) for almost all teG.

Definition : A measurable complex-valued function y on G satisfies the
Schoenberg condition provided

(a)  is integrable on every compact set;
(b) there exists a constant M such that

|JeF@O W@ dt| <Msup | [oF(t)y (@) dt]

for every Fe K (G), where K (G) is the set of continuous functions on G
with compact support.

The following theorem is due to Schoenberg [17] for the case G = R
and to Eberlein [9] in the general case.

THEOREM. A measurable complex-valued yy has a representation as a
Fourier-Stieltjes transform if and only if i satisfies the Schoenberg condition.

Proof. 1t is immediate that if Y is a Fourier-Stieltjes transform then
satisfies the Schoenberg condition for the constant M = || v, |I.

If now y satisfies the Schoenberg condition define L : L' (G) -» C
as usual by

L(F) = [oF ()Y () d.
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By hypothesis
) A
IL(F)I < M”F”00 for every Fe K(G).

From Theorem 1 there exists a bounded Radon measure Dy deﬁned‘ |
on G such that
A
L(F) = [pF(y)dv,(y) for FeK(G).

Therefore it follows that

[F OV @) dt = [adv, (&) [F®)y@®)dt for all FeK(G)
and hence

v = j'ay_(T) dv,(y) for almost all teG,

which completes the proof.

Application 3 (Positive definite functions on abelian semigroups).
Let S be an abelian semigroup, i.e. a set equipped with a composition law
denoted by + such that the commutative and associative laws are valid.
We shall assume the existence of a neutral element 0. By /! (S) we shall
denote the real commutative Banach algebra of functions f :S—> R
with the property that

17 = 3 /@ <.

Multiplication in /! (S) is defined by convolution; viz.,

frxg@@) = ) [f(g@®.

s, teS
s+t_a

L

By a character on S we shall mean a function y : S — [—1, 1] which
satisfies

@® y©0 =1
(i) y(@+e) =y@)y () forall s,tesS.

A
The set S of all characters is an abelian semigroup under pointwise
A
multiplication. If we endow S with the topology of pointwise convergence,
A

then S is a compact Hausdorff space. By 4 (I* (S)) we shall denote the
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compact subset of / 1(8) consisting of all continuous homomorphisms
from I! (S) onto R endowed with the weak * topology.
Ifye S then the mappmg \
r,:1"(s)-»R -

defined by the relations

r,(f) =Y f(©y() for fel'(S)

seS
is a non-trivial continuous homorphism from /' (S) onto R so that I,
e 4 (I' (S)). Conversely for every I' € 4 (S)) there exists y € S with
r(f) =Y f()r(s) for fel'(S).

seS
It is easily verified that the mapping
Yy I,

is a homeomorphism of S onto 4 (I* (S)). We shall identify .S with 4 (I (S))
via this homeomorphism and consider the Gelfand transform f of fe I1(S)

as a continuous function on S via

Fo) =7T).

A bounded function ¢ : S — R is called positive definite if

Y fef(s)e(s)>0 forall fel*(S).

seS

In the sequel we shall assume that the spectral radius formula is valid
in the real Banach algebra /' (S); i.e., we shall assume that

[ 7] = tim |7

for every feI' (S). One can easily prove that the spectral radius formula
is true for the simple functions ¢,, &, + &, A¢, and ¢, * &, where for each
a € S the function ¢, is defined by the relations

0 for s #a
g, (s) =
1 for s=a.




— 282 —

In the general context of real Banach algebras, of course, the spectral §
radius formula need not hold.

The following theorem was demonstrated without the assumption
of the spectral radius formula for /' (S). The theorem was obtained by |
Berg-Christensen-Ressel [3] using the Krein-Milman Theorem along with §
an interesting characterization of the extreme points of the convex compact §
set of normalized positive definite functions. |

THEOREM. Assume that the spectral radius formula is valid for each
fel'(S). If ¢ is a positive definite function on S, then there exists a

unique positive Radon measure p on S such that
@(s) = [4y(s)du(y) for every seS.
Proof. The functional L : /' (S) — R defined by

L= 2 f&e®

seS

is positive, i.e. 1:,( f*f)>0. By our assumption of the validity of the
spectral radius formula we have ,

LD <oO] o for every fel'(s).

Exactly as in Theorem 1 and Theorem 3 there exists a positive Radon

A
measure u on S such that

L(f) = [4f ®du@y) for every fel'(S).

Hence

ICTIORSOWIOHORE
= 2 f() Jar(s)du(y) for every fel'(S)§

seS :
and therefore we conclude that

@(s) = J4v(s)du(y) for evéry‘ seS.

The uniqueness of u is a consequence of the Stone-Weierstrass Theorem :

the algebra /' (S) is dense in the algebra of all real continuous functions

on S.
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Application 4 (The spectral theorem for normal operators). Let
be a Hilbert space and let £ (#) denote the Banach algebra of all bounded
linear operators on . Consider a subalgebra 4 = & (%’) with the following
- properties:

(i) A is commutative;
(i) A is closed;
(iii) If Te A then T*e 4,
(iv) The identity operator belongs to A.

Let A denote the maximal ideal space of A. Since each T € 4 is normal

it follows that || T'|| = || T'||., for every T'e 4.
For each pair of vectors &, n € # define a mapping Ls , : 4 - C by

Lf,r’(T) = (Téa ”l)
then we have

LoD < TI-1e] Il =1¢l [l 1T

Therefore by Theorem 1 there exists a bounded complex Radon measure
He.y on 4 such that | pig, | < [[€ |- || || and

L., (T) = (4T dp,, forevery TeA.

An application of the Gelfand-Neumark theorem establishes the -
" uniqueness of the measure. The usual construction of a unique resolution
of the identity on the Borel sets of 4 can be made based on this formula.
A specialization of this formula to a single normal operator leads to the
classical spectral theorem. We shall not give the details here since many
excellent accounts exist (c.f. Berberian [1], [2], Segal-Kunze [18]). An
especially lucid presentation is given in Rudin [16].

BIBLIOGRAPHY

[1] BERBERIAN, S. Notes on spectral theory. Van Nostrand, Princeton, N.J., 1966.

[2] —— Lectures in functional analysis and operator theory Springer Verlag, New York-
Heidelberg-Berlin, 1974.




— 284 —

[3] Berg, C., J. R. C. CHRISTENSEN and P. REsseL. Positive definite functions on abelian
semigroups. Math. Ann. 223 (1976), pp. 253-272.
[4] Bucy, R. S. and G. MALTESE. A representation theorem for positive functionals on
involution algebras. Math. Ann. 162 (1966), pp. 364-367.
[5] — Extreme positive definite functions and Choquet’s representation theorem.
Jour. Math. Ann. Appl. 12 (1965), pp. 371-377.
[6] CHOQUET, G. Lectures on analysis, vol. II. W. A. Benjamin, Inc., New York, 1969.
[7] —— Deux exemples classiques de représentation intégrale. Enseign. Math. 15
(1969), pp. 63-75.
[8] DIXMIER, J. Les C*-algébres et leurs représentations. Gauthier-Villars, Paris, 1964.
[9] EBerRLEIN, W. Characterizations of Fourier-Stieltjes transforms. Duke Jour. Math. 22
(1955), pp. 465-468.
[10] GELFAND, I., D. Ratkov and G. StLov. Commutative normed rings. Chelsea, New York
1964.
[11] Loowmrs, L. Abstract harmonic analysis. Van Nostrand, New York, 1953.
[12] MALTESE, G. Multiplicative extensions of multiplicative functionals in Banach
algebras. Arch. Math. (Basel) 21 (1970), pp. 502-505.
[13] —— Convexity methods and the Choquet boundary in Banach algebras. Bolletino
Union Math. Ital. (5) 15-A (1978), pp. 131-136.
[14] PuELPS, R. R. Lectures on Choquet’s theorem. Van Nostrand, New York, 1966.
[15] RupIN, W. Fourier analysis on groups. Interscience, New York, 1962.
[16] Functional analysis. McGraw-Hill, New York, 1973.
[17] SCHOENBERG, I. A remark on the preceding note by Bochner. Bull. AMS 40 (1939),
pp. 277-278. ‘
[18] SeGAL, 1. E. and R. KUNZE. Integrals and operators. McGraw-Hill, New York, 1968.

( Regu le 15 février 1979)

George Maltese

Universitdt Miinster
Miinster, Germany




	INTEGRAL REPRESENTATION THEOREMS VIA BANACH ALGEBRAS
	1. Introduction
	2. Integral representation theorems for linear functionals
	3. Applications of the integral representation theorems
	...


