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2. INTEGRAL REPRESENTATION THEOREMS FOR LINEAR FUNCTIONALS

Let A be a commutative Banach algebra over C and let 4 denote the

locally compact space of regular maximal ideals of 4. For each x e 4 we -
A ' A

use x to denote the Gelfand-transform; i.e., x is the continuous mapping
from A to C defined by the relations:

A

x(m) = m(x) for med.

By C, (4) we shall denote the algebra of all complex-valued continuous
functions on 4 which vanish at infinity. For any subset &/ < A we shall

A A A
use the notation o/ to denote the set { x :x € & }. As usual || x ||, denotes &
the supremum norm.

THEOREM 1. Let f be a linear form on the complex commutative
Banach algebra 4 and let & be a linear subspace of 4. The following two
statements are equivalent: '

(1) There exists a constant M such that

| f®)|<M|x|, for every xe ..
(2) There exists a bounded complex Radon measure u on A4 such that
f () = [, x(m)du(m) for every xesf.

Proof. The implication (2) = (1) is clear with M = ||u|. We shali
prove (1) = (2). Define a mapping L : .;i — C by |
L) = /(.
It follows from (1) that L is well-defined, and that
| L(;) | < M”;\c | for every re o

and so L is continuous with || L || < M. Using the Hahn-Banach Theorem
we can extend L to a bounded linear form L, on C, (4) and by the Riesz
Representation Theorem we obtain the existence of a bounded complex
Radon measure pu on 4 such that
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|u] =1L] =]Lo| and
Lo (9) = [4@(m)du(m) for every ¢eCo(4).

In particular

fx) = L(;) = Ly (/;c) = |4 ;(m)du (m) for every xe /.

A
Remark : Suppose that 4 has an identity and that 4 is closed under
A
complex conjugation, then since 4 contains constants and separates the

. A
points of A, the Stone-WeierstraB Theorem implies that 4 is dense in
C (4), the algebra of all complex-valued continuous functions on the
compact Hausdorff space 4. If we impose these additional conditions on
A and if we take & = 4 in Theorem 1, we can conclude that in this case
the representing measure p is uniquely determined.

If the algebra 4 has a continuous involution, one can use Theorem 1
to derive an extended version of a theorem due to Raikov [10]. We proceed
to describe the situation.

Let A be a complex commutative Banach algebra with an isometric
involution * and a bounded approximate identity { u,} ;.4 i.e., a net
satisfying the following conditions:

[us]] <1 for each Aed,

|usx —x|| >0 for each xed.

A continuous positive functional on A4 is an element f € A4’ such that
f (x*x) >0 for every x € A. If fis a continuous positive functional on A
then the Cauchy-Schwarz inequality is valid (Dixmier [8, p. 23]) and this
implies the following facts:

f) = £
| f )P <] f| f(x*x) for every xed.
If the involution is symmetric, which means (x*)" = x for every x € 4
or, equivalently, that every m e 4 is a positive linear functional, then by

modifying a classical method of Gelfand-Raikov-Silov [10; p. 62] one can
prove that

| f x| <] f] “;”oo for every xeAd.
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As a corollary to Theorem 1 and the above discussion we obtain the
following extended theorem of Raikov [10; p. 64], see also Bucy-Maltese [4]):

THEOREM 2. Let A be a commutative Banach algebra with an iso-
metric involution which is symmetric. Suppose that A4 has a bounded
approximate identity and let f € A’ be a continuous positive functional.
Then there exists a unique positive Radon measure u on 4 such that || x ||

~ || £ || and )
fx) = [4x(m)du(m) for every xeAd.

Proof. From the above remarks we know that

1F@|<| 7] |x]. for every xeAd.

By Theorem 1 there exists a complex Radon measure p on 4 such that
Jnlf < f [l and

fx) = [4x(m)du(m) for every xecA.
This formula implies

5| <[5l [u] <]x] o] for every xea,
so that || f || < ||« || and hence || £ || = |||}

A
Since A is a self-adjoint subalgebra of C, (4) which separates points
A A
and for each m e 4 contains a function x such that x (m) # O (infact ')

there exists an element u, of the approximate identity such that u, (m) # 0),
the Stone-WeierstraB Theorem implies the uniqueness of the measure p.

A
The positivity of u also follows from the fact that 4 is dense in C, (4).
In fact if p is a non-negative function in C, (4), then p = | q |2 for some
g € C, (4). Choose a sequence { x, } in 4 such that ,

A
X, > (.

) If me A, then || m|| # 0 and by the assumption of symmetry m is a positive
functional. Therefore, as mentioned above, || m || = lim m (u,) so that there must exist
a

some ug of the approximate identity such that m (ug) # O.
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Since (x})"= x, it follows that (x,)"— g and hence
xax0) = |a|> =p.
This implies
f4p(m)du(m) = lim f, (xp%)") (m) du(m)

= lim f (xx,) >0,

so that u is a positive measure and this completes the proof.
If 4 has an identity, as is the case in Raikov’s original version, the above
proof can be somewhat simplified.

TueoreM 3 (Raikov). Let A be a complex commutative Banach
algebra with an identity e and with an isometric involution which is sym-
metric. If f is a continuous positive functional on 4, then there exists a
unique positive Radon measure y on 4 such that [[p || = || f || and

f(x) = j'A;(m) du(m) for every xeAd .

Proof. As above we know that

1f | <| 7] |*]o for every xed.

From Theorem 1 there exists a complex Radon measure pu on 4 such
that || || <|| £ || and

fx = SA;(m) du(m) for every xe€A.

Hence ||p||<||f|= f( =p@) <|[ul|l so that p()) =[]
which is enough to imply that p is positive. The uniqueness of p follows
as in the Remark to Theorem 1.

3. APPLICATIONS OF THE INTEGRAL REPRESENTATION THEOREMS

Application 1 (Bochner’s Theorem). Let G be a locally compact abelian

group and let G denote the (locally compact) character group. Denote

1’Enseignement mathém., t. XXV, fasc. 3-4. 19
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