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Since (x*)A= xn it follows that (xw)A-* 5 an^ hence

(xnx*n)*-* U I2 P-

This implies

JJju(m) lim JjCvO (m) (m)
«

lim / (x*x„) > 0,
n

so that pis a positive measure and this completes the proof.

If A has an identity, as is the case in Raikov's original version, the above

proof can be somewhat simplified.

Theorem 3 (Raikov). Let Abe a complex commutative Banach

algebra with an identity e and with an isometric involution which is

symmetric. If / is a continuous positive functional on A, then there exists a

unique positive Radon measure pon Asuch that |0 || || / || and

A

f(x) jjx(m)dp(m) for every xeA

Proof. As above we know that

l/wI <11/Il IMU for every xeA-

From Theorem 1 there exists a complex Radon measure on such

that |0 || < || / || and

A

/ 0) fd X (m) dp (m) for every xeA.

Hence || p||< || / || / (e) p(1)< \\p||so that /t(l)=JO||
which is enough to imply that p is positive. The uniqueness of p follows

as in the Remark to Theorem 1.

3. Applications of the integral representation theorems

Application 1 (Bochner's Theorem). Let G be a locally compact abelian
A

group and let G denote the (locally compact) character group. Denote

L'Enseignement mathém., t. XXV, fasc. 3-4. 19
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Haar measure on G by dt and the group algebra (with convolution as

multiplication) by L1 (G).

Definition : A function peL (G) is said to be positive definite provided

J J F (0 F (s) p (t — s) dtds > 0
;

G G

for every F eL1 (G).

Using the natural involution F -» F ofF1 (G) defined by F (0 F -1),
we can rewrite the definition of positive definiteness as follows : p e F00 (G)
is positive definite provided

J F*F(0p(0 dt > 0 for all F e L1 (G).
G

For a positive definite function p define the mapping P iL1 (G) -> C

as follows: P(F)J F
G

Therefore P is a continuous positive linear functional on the symmetric
involution algebra L1 (G) such that ||P || \\p U^. By the discussion

preceding Theorem 2 and the fact that L1 (G) has an approximate identity,
we know that

I P (F)I^ II II J FII» for every (G),
A

where F is the Fourier-Gelfand transform. By Theorem 2 there exists a

unique positive Radon measure \l on A (L1 (G)) such that

P (F) U(H(g» F(H du (T) for every e L1 (G).

It is classical that A (L1
(G")) is homeomorphic to the locally compact

A
character group G under the correspondence F<->7 where

F (F) F (7) for every F eL1 (G)
A

Therefore using the same symbol for the measure induced on G by p
under this identification, we obtain

P(F) Ja F(y)dfi(y) for every FeL^G)

which implies
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Jo J7 (0 p(t) dti$dp(y) $aF(t) y(t)dt

\gF (t) ^y(t)dp(y) dt.

Since this holds for all FeL1 (G) we conclude that

p(t) \^y(t)dfi(y) for almost all

This is, of course, the famous Bochner characterization of positive

definite functions ([5], [6], [7], [10], [11], [16]).

Application 2 (A theorem of Schoenberg-Eberlein). A complex-

valued function if/ defined on the locally compact abelian group G is called

a Fourier-Stieltjestransform if there exists a bounded Radon measure
A

defined on the dual group G such that

x[/ (t) (0 dvt (7) for almost all teG

Definition : A measurable complex-valued function on G satisfies the

Schoenberg condition provided

(a) xj/ is integrable on every compact set;

(b) there exists a constant M such that

I J GF(t)^ (0 dtI < Msup I J aF(t) y dt |

y

for every FeK(G), where K(G) is the set of continuous functions on G

with compact support.
The following theorem is due to Schoenberg [17] for the case G R

and to Eberlein [9] in the general case.

Theorem. A measurable complex-valued \j/ has a representation as a

Fourier-Stieltjes transform if and only if i\t satisfies the Schoenberg condition.

Proof. It is immediate that if xj/ is a Fourier-Stieltjes transform then ij/

satisfies the Schoenberg condition for the constant M ||v^ |j.

If now \j/ satisfies the Schoenberg condition define L : L1 (G) -> C
as usual by

L(F) JcF(0
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By hypothesis

I L(F)I< MI Fl,,, for every

From Theorem 1 there exists a bounded Radon measure defined
A

on G such that

L(F) JaF (y) dv+ (forTherefore it follows that

SaF(t)ilr(t)dt $GF (t)y(t)dt for all

and hence

if/(J) J"£7(0dv^(y) for almost all teG,

which completes the proof.

Application 3 (Positive definite functions on abelian semigroups).
Let S be an abelian semigroup, i.e. a set equipped with a composition law
denoted by + such that the commutative and associative laws are valid.
We shall assume the existence of a neutral element 0. By Z1 (S) we shall
denote the real commutative Banach algebra of functions f : S -> R
with the property that

1 y I I j/(«)| <oo.
aeS

Multiplication in Z1 (S) is defined by convolution; viz.,

f*9(a)£ /0)g(0•
s, teS

s+t—a #

By a character on S we shall mean a function y : S -> [-1, 1] which
satisfies

(i) 7 (0) 1

(ii) y (s +1) y (s) y (t) for all s, t e S.

A
The set S of all characters is an abelian semigroup under pointwise

A
multiplication. If we endow S with the topology of pointwise convergence,

A
then S is a compact Hausdorff space. By A (Z1 (S)) we shall denote the



compact subset of Z1 S)'consisting of all continuous homomorphisms

from Z1 (S) onto R endowed with the weak * topology.
A

If yeSthen the mapping

jy/HS)-»*
defined by the relations

ry(f)Z f(s)y(s)for/ eZ1 (S)
seS

is a non-trivial continuous homorphism from Z1 onto R, so that ry

e A (Z1 (Sj). Conversely for every Ted (51)) there exists with

f(f) Z /(«)?(*) for /e/HS).
seS

It is easily verified that the mapping

y -» rv
A A

is a homeomorphism of 5 onto d (Z1 (5)). We shall identify S with d (Z1 (5))

via this homeomorphism and consider the Gelfand transform/ of/e Z1 (S)
A

as a continuous function on S via

f(y)f(i>A bounded function 5 -» R is called positive definite if

Z f*f0)0) > 0 for a11 /6/1 w
seS

In the sequel we shall assume that the spectral radius formula is valid

in the real Banach algebra Z1 (5); i.e., we shall assume that

II/IU lim II

n-+ oo

for every fe 11 (S). One can easily prove that the spectral radius formula
is true for the simple functions sa, sa + sb, lsa and sa* sb9 where for each

a e S the function sa is defined by the relations

£«0)
0 for s # a

1 for s — a
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In the general context of real Banach algebras, of course, the spectral
radius formula need not hold.

The following theorem was demonstrated without the assumption
of the spectral radius formula for /1 S). The theorem was obtained by
Berg-Christensen-Ressel [3] using the Krein-Milman Theorem along with
an interesting characterization of the extreme points of the convex compact
set of normalized positive definite functions.

Theorem. Assume that the spectral radius formula is valid for each

/ el1 S).If cpis a positive definite function on S, then there exists a
A

unique positive Radon measure pon Ssuch that

<P (s) (s) dp (y)for every

Proof. The functional L : I1 (S) -> R defined by

L(/) E / (s) (s)
seS

is positive, i.e. >0. By our assumption of the validity of the
spectral radius formula we have

I L(/)I < (p(0)|| / ||oo for every /
Exactly as in Theorem 1 and Theorem 3 there exists a positive Radon

measure /t on Ssuch that

L(f) (y)dn(y) for every /e/^S).
Hence

E /0)<?>0) E f (s)y(s))dti
seS seS

E / (s) $<ft(forevery
SeS

and therefore we conclude that

<P(S)$$y(s)dfi(y) for every seS.
The uniqueness of p is a consequence of the Stone-Weierstrass Theorem:/\the algebra /1 (S1) is dense in the algebra of all real continuous functions

on S.
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Application 4 (The spectral theorem for normal operators). Let

be a Hilbert space and let SC A? denote the Banach algebra of all bounded

linear operators on ^. Consider a subalgebra/1 <= (^f) with the following

properties :

(i) A is commutative;

(ii) A is closed;

(iii) If Te A then T* e A\

(iv) The identity operator belongs to A.

Let A denote the maximal ideal space of A. Since each Te A is normal
A

it follows that || T || || T for every Te A.

For each pair of vectors ^,r\e^ define a mapping n
: A -> C by

L^(T) (T^rj)
then we have

I wr)I<II TII-IUIIIill IUI INI-II^IU

Therefore by Theorem 1 there exists a bounded complex Radon measure

p{tV on A such that \\p^v || < || £, || * \\p||and

Lt,n (T) dp^ for every Te A.

An application of the Gelfand-Neumark theorem establishes the

uniqueness of the measure. The usual construction of a unique resolution
of the identity on the Borel sets of A can be made based on this formula.
A specialization of this formula to a single normal operator leads to the
classical spectral theorem. We shall not give the details here since many
excellent accounts exist (c.f. Berberian [1], [2], Segal-Kunze [18]). An
especially lucid presentation is given in Rudin [16].
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