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ON LIE'S HIGHER SPHERE GEOMETRY

by Jay P. Fillmore

1. Introduction

In this paper we draw together two theories having their roots in

the ideas of S. Lie over a century ago: Lie's higher sphere geometry, with
its famous line-sphere transformation [5], and the theory of Lie groups,
especially the description of a geometry by global Lie groups 1. Indeed,

not until the 1960s, with the appearance of W. M. Boothby's description
of homogeneous contact manifolds [1, 2] and with the appearance of
parabolic subgroups, could this connection be established. One can now

say, in terms of Lie groups, that the three-dimensional complex line and

sphere geometries are isomorphic and that the real line and sphere geometries

are two distinct real forms of one geometry. Furthermore, the line-sphere
transformation gives explicitly the isomorphism of the complex forms.

In Section 2 we summarize the formulation of Boothby's theory for
algebraic homogeneous contact manifolds and make some observations

about their real forms. The classical contact manifolds of complex co-directions

in projective space and of Lie's higher sphere geometry are described

in general in terms of this theory in Sections 3 and 4. Finally, in Section 5,

the connection with Plücker's line geometry in three dimensions is
established, and the line-sphere transformation is brought into perspective.
This introduction continues with an overview of F. Klein's formulation
of Lie's theory [5, 6], Boothby's theory, and their connection.

To a line in complex projective space P3 may be assigned Plücker
coordinates

£i — Pu > £2 P31 £3 P23

£4 P03 £5 — P02 ^6 Poi

[6, §20]. These coordinates satisfy

«1É4 + É2É5 + Ê3É6 0,
1 This description of Lie's higher sphere geometry in terms of Lie groups answers

a question posed in 1965 by S. Sasaki [9, p. 173].
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and hence lines in P3 correspond to points of a quadric Q4 in P5. Two lines
in P3 intersect when their corresponding points on Q4 are conjugate.
A surface element in P3, a point and incident plane, becomes the pencil
of lines passing through the point and lying in the plane; this corresponds
to a line lying in Q4. The space of surface elements in P3 thus corresponds
to the space of lines in Q4. The projectivities of P5 which preserve the

quadric Q4 permute the lines of Q4 and hence the surface elements of P3.

Moreover, these projectivities preserve the condition, between two surface

elements at infinitesimally adjacent points, that a point of one lies on the

plane of the other; hence they are contact transformations of P3.

To a sphere

x2 + y2 + z2 — lax — 2by — lez + C 0

in complex Euclidean space P3, with center at x a, y b, z c and

radius
r2 a2 + b2 + c2 — C

the sign of r corresponding to an "orientation", may be assigned

homogeneous coordinates
a ß y X ixa=-,b=-,c=-,r=-, C —
v v v v v

[6, §25]. These coordinates satisfy
a2 + ß2 + y2 — X2 — liv 0,

and hence oriented spheres in P3 correspond to certain points of a quadric
W4 in P5; if spheres which are points or planes or which have centers at

infinity are included, all points of W4 are obtained. Two spheres in P3

are tangent at a point, orientations taken into account, when their
corresponding points on W4 are conjugate. An "oriented" surface element in P3*

a point and incident oriented plane, becomes the pencil of spheres tangent
to the plane at the point; this corresponds to a line lying in P4. The space

of oriented surface elements of P3 thus corresponds to the space of lines

in lF4. The projectivities of P5 which preserve the quadric W4 permute
the lines of P4 and hence the oriented surface elements of P3. Moreover,
these projectivities are contact transformations of P3.

The line-sphere transformation, discovered by Lie, is given by

a + yf~--lß9 oc — y/ — Iß,
Ç2 y + 1, {5 y — X,
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as formulated by Klein [6, §70]. This makes correspond points of the

quadric Q4 of signature (+ + + -- -) and points of the quadric W4

of signature (+ + + + --). Conjugate points correspond to conjugate

points, and a line in one quadric corresponds to a line in the other. Thus,

surface elements in P3 correspond to oriented surface elements in E3

and this correspondence is a "contact transformation".

Now, classically a contact transformation in P3 or E3 is a transformation

on the 5-dimensional space of surface elements which preserves, up to a

non-vanishing multiple, a maximal rank Pfaffian form

co dz — pdx — qdy

[6, §63], where the coordinates x, y, z, p, q describe the surface element

consisting of the plane

z' - z p(x'-x) + q(y'-y)
at the point (x, y,z). The condition co 0, that at two infinitesimally adjacent

points the point of one surface element lies on the plane of the other,
is preserved by a contact transformation. The appropriate spaces for the

line-sphere transformation are the 5-dimensional spaces of lines in Q4

and lines in ¥4. Exhibiting the Pfaffian forms and examining the effect

of the line-sphere transformation on them may be done systematically by
observing that these spaces are homogeneous.

Boothby's description of compact homogeneous complex contact
manifolds [1, 2; and 7, §2] constructs for each type of simple complex
Lie algebra g: a connected centerless simple Lie groups G having Lie
algebra g, a parabolic subgroup P of G, and a Pfaffian form co on a

principal C*-bundle over G/P, so that G/P, with co pulled down by local
sections, is a compact complex contact manifold, homogeneous under the

identity component G of the group of all its contact automorphisms. Every
such contact manifold is so obtained uniquely up to isomorphism. This
construction yields, for the classical simple Lie algebras:

An projective cotangent bundle of Pn—the classical

space of incident point-hyperplane pairs in Pn,

Pj and Dt space of lines in a quadric,

Ct odd-dimensional projective space P2i+1,

[1,(7.1)]. The isomorphism A3 ~ D3 arises from the description of
surface elements in P3 as lines in Q4 by Plücker coordinates. Since the
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complex quadrics Q4 and W4 both have groups of projectivities of the
type D3, the contact manifolds of line geometry and sphere geometry,
when viewed as the spaces of lines in Q4 and W4 respectively, are necessarily
the same, that is, isomorphic.

When Boothby's description of homogeneous contact manifolds is
refined, using J. A. Wolf's theory of complex flag manifolds [8, Ch. I],
to include their real forms, line geometry and sphere geometry are no
longer the same, but, as was classically recognized [6, §25], are obtained
from the real forms PSO (3, 3; R) and PSO (4, 2; R) of PSO (3, 3; C)
and PSO (4,2; C), where the quadratic forms defining these projective
special orthogonal groups are those of the quadrics Q4 and W4. Now,
PSO (3, 3; C) and PSO (4, 2; C) are isomorphic, so the corresponding
complex contact manifolds are isomorphic; in fact, these groups, are
conjugate in PSL (6; C) by the matrix of Klein's description of the
line-sphere transformation. Viewed another way, PSO (3, 3; R) and
PSO (4, 2; R) correspond to two real forms of PSO (3, 3; C) defined
by two complex conjugations. Consequently, real line geometry and real
sphere geometry are two distinct real forms of complex line geometry. The
line-sphere transformation then corresponds to an automorphism of
PSO (3, 3; C) connecting the two complex conjugations.

Line-sphere
transformation

Real points of P5. Real points for line
geometry
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2. Homogeneous contact manifolds

We formulate the notion of contact manifold in terms of complex
analytic manifolds; the definitions apply equally to real smooth manifolds.
Especially, if the complex analytic manifold is a smooth algebraic variety
defined over R and if its various structures are defined over R, then the
elementary assertions here apply to the set of real points of the variety.

Throughout this. section we indicate proofs only when they differ
from those of Boothby [1, 2] or Wolf [7, 8],

2.1. Aycomplex contact manifold is a complex manifold M of odd
dimension 2n— 1 together with a complex contact structure which is prescribed
by a family { (Ux,coj } consisting of an open cover { } of and
holomorphic Pfaffian forms o)x on Ua satisfying:

(i) coxa (do)a)"~1 does not vanish on Ux, i.e., wx is of maximal
rank;

(ii) if Ua n Ußis not empty, then / on Ux n Uß with

fßx holomorphic and non-vanishing; and

(iii) the family { Ux, cox)}is maximal with respect to (i) and (ii).

Apiolomorphic map g: M -> M' between two contact manifolds is a
contact transformation if g* m'J} is contained in {(Ux,cox)}.
[1, §2].

' ' " '

2.2. Let M be the space of hypersurface elements in complex
Euclidean space E" whose hyperplanes meet the x„-axis, that is, points
(xu x„)and incident hyperplanes

xh — xnPi X1—Ah) + ••• + Pn-x — X„_1)

where primes denote running coordinates. The single set of coordinates

xi>Pi, ,pn-i on M together with the Pfaffian form

to dxnpidxi- - p„_1dxn_l

suffices to define a contact structure on M [6, §63]. This is the classical
contact manifold to which we will relate all others.

2.3. The contact structure on a complex manifold M has been
formulated by S. ICobayashi in terms of a principal C*-bundle over M [1, §2
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and 7, §2], Let { (Ux, cox)} be a contact structure on M, so that c fßxwx
on UxnUß. Define the holomorphic principal C*-bundle ->• using

the transition functions fßa~l ~ on n'1 (UJ is x C*
Jßca

and, with coordinate z, on C*, zp za on n Up. on Ua pulls
back by 7c* to a Pfatfian form on n~l (Ux), again denoted On
71

1 (^st) r> 7t
1

(Up) we have mp and zp /^_1 so that
zama ZßtOß', the za0)a hence define a holomorphic Pfafiian form m on B.
Let Ra, a in C*, denote the right action of C* on B. The Pfaffian form
co satisfies:

(a) (dcof does not vanish on B;
(b) co vanishes on vectors tangent to the fibers of B; and

(c) Ra*co aco, a in C* [1, (2.1) ].

Conversely, a holomorphic principal C*-bundle B over M together with
a holomorphic Pfaffian form cu satisfying (a, b, c) defines a contact structure
on M. The cox on Ux are obtained by pulling down co by sections of B
over Ux.

Complex contact structures on M correspond uniquely to principal
C*-bundles n: B—> Mequipped with a Pfaffian form co satisfying (a, b, c),
up to isomorphism [1, (2.1) ]. Contact transformations M -» M' are exactly
those homomorphisms g:B^B',n'og go n and R'aog goRa,
satisfying g*co' co. Consequently, contact automorphisms of M correspond

to bundle automorphisms g of5 which preserve co : g*co co [1,(3.1)].
In case M is compact, its group of all contact automorphisms is a

complex Lie group which acts holomorphically on [1, (3.2) and 2, §1],

2.4. Let F be a complex manifold of dimension n and the bundle
of complex co-directions of V, that is, M is obtained from the bundle B
which is the cotangent bundle of V less its zero section by passing to the
projective space of each fiber. £ is a principal C*-bundle over M. If
xu..., xn are coordinates on an open set of in may be written
over U as

£ ui(£)dx1 + +un(^)dxn,

where the functions ut (£) are homogeneous of degree one; the functions
xu..., x„, uu u„ define coordinates in B over U. The Pfaffian form

co u1dx1-{-... -p undxn
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on Bsatisfies (a, b, c) of 2.3 and hence defines a contact structure on M.
Again, this is classical [6, §63, p. 242]. We may cover M over U by open
sets where some ut is not zero, say un # 0, and then set

"i ~Pi,-,K-i- Pa- 1 ;

this gives a section of B over this open set and co pulls down to

dx„- ptdxt - - p„-idx„_1,
the description in 2.2.

2.5.Let V of 2.4 be complex projective space P". Points of P" are
described by homogeneous coordinates x„, written as a column
vector x ' (x1,..., x„), and hyperplanes

UX'MqXq + + unxn — 0

of P" by homogeneous coordinates w0, written as a row vector
u - (u0,...,un). A cotangent vector at x is determined by the equation
of a hyperplane u incident with x, ux0; if x is replaced by Ax, u must
be replaced by ul'1. Thus B may be described by (x, u), ux 0, with
(Ax, mA_1) equivalent to (x, u). M is consequently described by incident
points and hyperplanes (x, u), ux0; now (Ax, up'1) is equivalent to
(x, u). The Pfaffian form

œ udx u0dx0 + + undxn

is well-defined on B and gives the contact structure on the space of
co-directions, that is, on the space of hypersurface elements, of
[6, §63, p. 242],

A projectivity of P", a transformation in PSL (n + 1 ; C), which will
be represented by x -* gxwithg in SL (n + 1 ; C), transforms hyperplanes
by u-» ug'1and cotangent vectors and co-directions by (x, u) (gx, ug~x).
Since

g*co g* (udx) ug~ld(gx)ug^gdx
projectivities are contact transformations of A/. In addition, since ux — 0,
udx -'x'du and, hence, classical projective duality (x, u) ('u,—!x)

preserves co and is a contact transformation [6, §62],

2.6. Let M be a complex contact manifold which is ; is
a smooth algebraic variety and the contact structure is given by a bundle
B -> M and Pfaffian form mon Bwhichare algebraic.
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Assume further that M is connected, compact, and homogeneous under
a /z/zear algebraic group G of contact automorphisms. Since M is connected,
we may assume G is connected. We may also assume that G acts effectively
on M: only the identity element of G acts as the identity transformation
on M.

Now G is semi-simple [1, §4]. For the radical of G, a normal solvable

subgroup, has a fixed point in compact M [3, (10.4)] and since, G acts

effectively on M, this radical is trivial. Thus M is exhibited as G/P, with
G connected and semi-simple, and P the isotropy subgroup of a point
x0 in M. Since G/P is compact, P is a parabolic subgroup of G [3, (11.2);
4, §68 ff.; and 8, §2]. P is its own normalizer in G, so contains the
center of G; since G acts effectively on M, this center is trivial. G is
centerless.

Since G is a linear algebraic group, we will throughout view the
elements of it and its Lie algebra g as matrices. Thus: For g in G and X
in g, Ad (g) X gXg~1, a product of matrices. Left-invariant Pfaffian
forms on G are given by co0 (g~xdg), where co0 is a linear function ong,
and dg is the matrix of differentials of the entries of g. The action of Ad (g)
on left-invariant Pfaffian forms on G, i.e., Ad(g)*, is then (tAd(g)œ0) (X)

co0 gXg_1).

2.7. From 2.3, G acts on the principal C*-bundle B over M G/P.
Let bo in B lie over the point x0 in M fixed by P. If g is in P, then gb0 lies

over x0, so gb0 Rab0 b0a for a unique a x (#) in C*. %: P -> C*
is a homomorphism. % is either surjective or trivial, and in the former case

G is transitive on B since it is then transitive on M and on the fibers of B

over M. In fact, % is surjective [2, §2] ; the key lemma of Boothby's argument
[2, p. 277] may be replaced by: The centralizer in g of a nonzero element of g

is never a parabolic subalgebra. Thus B is exhibited as G/P1 with Pu the
kernel of /, a subgroup of P. The bundle B M is G/P1 -» G/P with fiber
P/P1 c- C*.

By means of the map G -> G/P1; pull the Pfaffian form co on B G/P,
which defines the contact structure, up to a left-invariant form co0 (g~1dg)

on G. This form is Ad(P^-invariant:

co0 (gXg-1) cûq(X)in in g

Let p and px denote the Lie algebras of P and Pu respectively. Conditions

(a, b, c) of 2.3 become:
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(a) dœ0)"^0;

(b) coo (X)0, Xinp; and

(c) co0 (g~1Xg) x(d) ®o W, in in g;

where dco0(X,7) - i ®0 [X, Y] [1, (5.1), (5.2), (5.3)].

Since g is semi-simple, its Killing form is non-degenerate and we
may write

œ0(X) <W,X}Xing,
for a unique W in g. Conditions (a, b, c) now become :

(a') the centralizer of Wing is

(b') < W, X> 0, Xinp ; and

(c') [X, W] x'(X) W, Xinp;where ; (isthe derivative of x at the identity of [1, (5.6) ].
As a consequence of (e'), P -frestrictedto a Cartan subalgebra

contained in p is a root of g; EpW may be taken as the corresponding
root vector. When the roots of g are ordered, is a positive root and

P +a, a a positive root, is not a root [1, (6.2) ]. Hence p is the maximal
root for this ordering and Gis simple [1, (6.3) and 4, (25.6)].

2.8 Lét g be a complex semi-simple Lie algebra, let I) be a Cartan
subalgebra, and choose a system of simple roots of g with respect to 1).

Designate a subset of the simple roots as free and call the remaining simple
roots non-free. An arbitrary root is called free if it contains a free simple
root as a summand, and non-free if all its summands are non-free simple
roots. A free root is necessarily positive. Besides free and non-free roots
there are only the negatives of free roots [4, (69.23) ]. If denotes the root
space for the root a, then

P I)+ Z 9«+ E 9,
a non-free a free

is a parabolic subalgebra of g, that is, it corresponds to a parabolic subgroup
of any connected complex Lie group G having g as its Lie algebra. Now,
any parabolic subalgebra of g is Ad(G)-conjugateto a parabolic
subalgebra given by the above construction. Thus, once I) and the system of
simple roots are fixed, the subsets of the simple roots classify parabolic
subalgebras up to conjugacy [8, §2],
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2.9 Continuing 2.7: We may choose a Cartan subalgebra f) of p,
choose a system of simple roots, and find the subset of free simple roots
so that p is given by the construction of 2.8 [8, §2]. The free and non-free
roots are completely determined by the maximal root p, in that

< Hp, Ha > 0 for a free,

< Hp, Ha 0 for a non-free,

where Ha in 1) is defined by < Ha, H > a (tf), H in Î) [1, (6.5) ].
Consequently, we may describe p, p1? and co0 for an algebraic homogeneous
contact manifold in terms of the maximal root p by

(i) p I) + £ ga,
<Jïp, Hay ^ 0

(ii) Pi elements Z of p orthogonal to < Hp, 0, and

(ill) co0(Z) <Ep,Xy,Xin g,

[7, p. 1035]. Since G is connected and centerless with Lie algebra g, the
groups G, P. P1 and the form m are completely determined.

2.10. Conversely, begin with a simple complex Lie algebra g. Choose
a Cartan subalgebra I) and a system of simple roots. Using the maximal
root p,define p, p1; and co0as in (i, ii, iii) of 2.9. Take for the adjoint
group of g, which is connected, centerless, and simple, and for P and Px
the subgroups corresponding to p and px. Then, m0(g~1dg) is a left-
invariant, ^(/(PJ-invariant Pfaffian form on G, and defines a form co

on G/Pj. The map X —> < Hp,XX in p, gives rise to a homomorphism
X-P -»• C*. The form co on the principal C*-bundle G/P1 over G/P satisfies

(a, b, c) of 2.3 and hence defines a contact structure making G/P a compact
homogeneous algebraic contact manifold fl, Th. C and 7, p.* 1035].

In this manner, Boothby established that there is exactly one compact
homogeneous algebraic contact manifold, up to_ isomorphism, for each type
An,..., G2 of simple complex Lie algebra [1, (7.1)]. For these manifolds,
the group G is the identity component of the group of all contact
automorphisms [7, (2.5) ]. Boothby's classification [1, 2] was obtained with the
assumptions that the complex contact manifold was compact, simply
connected, and homogeneous under a complex Lie group of contact
transformations, and used H. C. Wang's theory of compact homogeneous
complex manifolds rather than parabolic subgroups. We may conclude
that these contact manifolds are algebraic.
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2.11. Let G be a semi-simple complex Lie group and G0 a real form

of G : G0 is the set of elements of G fixed under a complex conjugation

g -» g. We use a bar to denote the conjugate of an object, and the terms

real and stable refer to the conjugation.
Let P be a parabolic subgroup of G, and g, g0» P Lie algebras of G,

G0j P> 9o n P contains a stable Cartan subalgebra I) of g, | I) [8, (2.6) ].

If a is a root of g, so is ä; a is real if ä a. Now, choose a system of simple

roots and find the subset of free simple roots so that p is given by the

construction of 2.8. Set P0 G0 n P; G0/P0 is a subset of G/P. Wolf has shown

that the following are equivalent :

(i) real dimension of G0/P0 complex dimension of G/P,

(ii) G0/P0 is closed in G/P,,

(iii) the set of free roots is stable,

(iv) p or P is stable, and

(v) the algebraic manifold G/P is defined over R and G0/P0 is its
set of real points,

[8, (3.6) ]. When these conditions hold, G0/P0 is the unique closed orbit
of G0 on G/P [8, (3.4) ]. We call G0/P0 a real form of G/P.

Let M be a compact, algebraic homogeneous contact manifold. Assume
that M and its contact structure are defined over R, that is, the principal
C*-bundle B -» M and the Pfaffian form m on B are defined over R. Let
P be the isotropy subgroup of a real point x0 of M in the group G of
contact automorphisms. Then the complex conjugation on M defines

one on G, gx gx, under which P is stable. Hence, we obtain a real
form G0 of G so that the real points of M are G0/P0, P0 G0 n P. That co

is defined over R means W Ep lines in g0, and the maximal root p is real.
This is consistent with the stability of the set of free roots, as < Hp, Hä > 0
when < Hp, Ha > >0. Consequently, the real forms of M correspond
to the conjugations of g for which p is real.

2.12. The method by which the contact structure on G/P will be
exhibited, in the next sections, in classical form 2.2 is the following.

Let

^ X! 9a s

< 0

m is supplementary to p in g and of dimension 2n-l. We will determine
X near 0 in m as a function of xl9 ...,xn9pu ...,pn-1 so that X -> (exp X) • x0
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is one-to-one on an open neighborhood U of x0 in G/P and (exp X) • x0
is identifiable as the point {xu xn) and the incident hyperplane

x'n-xn jPl(^l-^l) + + Pn-l(Xn-l ~Xn-l) •

Now, (exp X) • x0 -> (exp X • b0 is a section of the bundle G/P± over U
and, via this section, the form co on G/P± pulls down to

co0 ((exp X)-1 d (exp X))

which, when expressed in terms of xu xn, pu pn-u will be identified
with

dxn - p1dx1 - - pn_1dxn_l

up to a constant multiple a ^ 0. For this latter calculation we will use

l-e~adx
(expX) xJ(expi) (dX)

ad X

dX-\ [X, dX\ + i [X, [X, dxj] -2 6

[4, (10.2) ], a series which is finite since m is nilpotent. In fact, our choice
of X will make the series for exp X themselves finite. The constant a ^ 0
could be made unity by using instead the section (exp X) • x0 -» (exp X)g ~1 -b0,
where g in P is chosen so that x (d) This amounts to following the

original section by Rin the bundle.

3. Co-directions in projective space

The contact structure on the (2n — l)-dimensional space of co-directions
in complex projective space Pn, described in 2.5, is obtained When the
construction of 2.10 is carried out for the simple complex Lie algebra of type
An, n > 1.

3.1 Let g $l(n + 1; C), complex (n+1) by (n+1) matrices of
trace zero. For Cartan subalgebra I) of g take the diagonal matrices of g.
Let ôb i 0,1,..., n be the linear function on I) which assigns to H diag
(hu hn) in I) the /^ diagonal element: ôt (H) hb The roots of g with
respect to Ï) are

5t - ôj ij 0,1 ,,.;,n
and i # j
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and the root vector Ea corresponding to the root a is •
_

Eöi-sj

the matrix with 1 in the ith row and jth column and Os elsewhere [4, (16.2) ].

A system of simple roots is

S0 S2? • ••? &n— l Sn 9

for which the maximal root is

P {S0 — S±) + (5i — 52) + ~ $n) — 30 — Sn

[4, App., Table E]. The Killing form of g is < X9 7) 2 (n+1) tr (XY),
but we replace this with < X, Y > tr (X Y) for convenience. Then the Ha

in I) are given by

H3i-Ôj diag(0,..., 0,1, 0,..., 0, -1,0, ...,0)

with 1 and -1 in the ith and jth entry, respectively. Especially,

Hp diag (1, 0,..., 0, -1).
We have

f < 0 7 0 or i n

>0otherwise,
so that p in (i) of 2.9 consists of matrices of the form

—, * * - * —

0 I

L 0 ——— 0 * _
of trace zero, where the starred entries are arbitrary.

3.2 The connected centerless simple group G PSL (n +1 ; C)
SL (n +1 ; C)/{center) is transitive on the space consisting of points x

and incident hyperplanes u, ux 0, in Pn, as in 2.5. The isotropy subgroup
P of the incident point and hyperplane

x0 '(1,0, ...,0), u0 (0, ...,0,1)
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has exactly p for its Lie algebra. Hence, the homogeneous contact manifold
which the construction of 2.10 gives is

G/P space of incident points and hyperplanes in P"

space of co-directions in complex Pn.

3.3Let m be the (2n-l)-dimensional supplement to p in g consisting
of matrices of the form

0

cf. 2.12. The product of any two matrices of m has a nonzero entry only
in the nth row and 0th column; the product of any three is zero. Set

X

x„~2^Pixi 0

where the summation is over i1, 2,..., 1. X is in m and

'
1

exp X — l„+i + + —

x, \ 0

x„-n—1

Xn Pl-Pn-lX1
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(expX)-1 1„+1 -X + -Z2

-x,

-x„_n-

—-*» + Z PiXi -—-7n-l ' 1-

The point
x (exp X) •x0 '(l.Xj, ...,x„)

is incident with the hyperplane

U Mo-(expX)"1 (-X„+^PtX1),

and the hyperplane ux' 0, x' ' (1, x/,..., x'n), is

x'n ~Xn Pl(xl~xl)+ +P„-1(X„_1'-X„_1).

Thus, this choice of Z establishes the classically identifiable coordinates

xu xmpu -,Pn-ion G/P.

3.8From p <50-<5„, we have W Ee in (iii) of 2.9 and
<»0 (Z) < W, XX) is the nO-entry of X. The form m on G/P is obtained
as co c0q((expX)'1 (/(exp X)) with

(expZ)-1 d (expZ) - ^ [Z, dZ]

as in 2.12. For Z as in 3.3, the only nonzero entry in [Z, ] is the n0>h

and it is ^jpidxi — — YjxidPi-Hence

(exp Z) 1 d (exp Z)

dxl
0

dxn _ •£

dxn~ Z PidxidpI -1 0 _
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and the «O-entry is

co dxn — Pidxt — — pn_1dxn_1

This identifies the contact structure with the classical one as in 2.12.

3.5 The real contact structure on the (2n — l)-dimensional space of
co-directions in real projective space P" is described by viewing all quantities
in the foregoing discussion as being real. Especially, G0 of 2.11 is the
connected centerless group PSL (n +1 ; R) consisting of real contact
automorphisms.

4. Higher sphere geometry

4.1 In complex Euclidean space En, the equation

x[2 + + x2 — 2a{x[ — — 2anxn + C 0

describes a sphere with center (au an) and complex radius r given by

r2 a\ + + a\ - C.

When r =£ 0, the two choices of sign for r is said to give two "orientations"
to the sphere. Thus, the n + 2 coordinates au an, r, C, which are related
by

a2 + + ü2n — v2 — C — 0,

describe the space of oriented spheres in En [6, §25].

Introduce homogeneous coordinates by

i 1, 2,..., n. Then the oriented spheres of En correspond to certain
points of the quadric pn+1 in Pn+2 described by

cc\ + + oc2n — X2 — pv 0.

The sphere corresponding to the point (al5..., an, 2, p, v) of Wn + 1 is

v(x[2 +... +x'n2) — 2olxx[ - - 2anx^ + n 0

Ordinary spheres have finite nonzero radius r, so v # 0. For v 0, we
obtain oriented hyperplanes. For X 0, we obtain point spheres or
hyperplanes with isotropic hyperplane coordinate vector; these carry no
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orientation. If we include these special cases as spheres of En, then Wn + 1

is the space of all oriented spheres in En.

Two spheres in En with centers (ati..., an), and radii r,r'
respectively are tangent, orientations taken into account, if

(ci1—a1)2 + +(an—an)2 (r—r)2;

Use a\ + + a2n r2 + C for both spheres to obtain the condition

for tangency as

2a1a[ + + 2anan — Irr' — C — C =0
or, in homogeneous coordinates,

2a1a1/ + + 2an(xn - 2XX' - fiv' - Vfi' 0

Hence, two spheres of En are tangent when their corresponding points
in Wn+1 are conjugate, that is, the line joining these points lies entirely
in Wn+1 [6, §25].

4.2, A pencil of mutually tangent spheres in En corresponds to a line
in Wn+1, This pencil of spheres determines an "oriented complex co-direction"
in En since it contains a point sphere and an incident oriented hyperplane.

Corresponding to the hyperplane

x'n ~Xn Pi (X1 ~~Xl) + ••• + Pn-l(xn-l-Xn-l)
at the point (xl9 xn) is the line t

«1 -Pi

a»-1 *„-1 -Pn-i

a« + t 1

2 0 -y/pp + l

XX 2(x„ -px)

v _ 1 _ _ 0

of Vn+\ where
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n 1 I

XX E X- p.X E PP E i7? ;
i=l i=l i=l

this is the pencil of spheres

E (^i-Xi + fP;)2 + (x'n-Xn-t)2 f2 E A2 +

passing through (xl5..., xn) and having their centers on the line normal
to the hyperplane at this point.

For later calculations it will be convenient to replace —p,..., ~pn-l9 1

by homogeneous ul9..., un_u un. The line in Wn+1 corresponding to the
hyperplane

u1{x1-x1) + + un{xn-x^ 0

at the point (xl9 xn) is then

where

i *1 Xi u±

I X„- 1 Un-1

<*n
~

X„ +1 Un

X 0 — «J~mt

V XX lux

v _ 1 _ _ 0

n

Ii= 1

n

ux E
i= 1

ttjXj uu
i= 1

Any convenient condition may be imposed on uu.

4.3. The contact structure on the {In - l)-dimensional space of lines
in Wn+19 that is, the space of oriented co-directions in complex Euclidean
space En, is obtained when the construction of 2.10. is carried out for
the simple complex Lie algebra of type or Dh I > 2 and I > 3 respectively.

However, it will be simpler to identify quantities geometrically if



we proceed by using the description of 2.7, since now the groups are

determined first.
Let 2 • 1„ 0

-2 0 0

0 0 0 -1

0 -1 0

be the matrix of the quadratic form defining Wn+1 in Pn+1. SO (A; C),

the special orthogonal group of this form, consists of matrices g in

SL(n + 3; C) for which %gAg A. The connected centerless simple group
G PSO (A; C) SO (A; C)/{center} is transitive on the lines of Wn+1

by Witt's theorem. Let l0 be the line

«1
— 0 ~ — o —

aB-l 0 0

a„ 0 + t 1

A 0 -1

P 0 0

V 1 0

of Wn+19 joining

<(0,..., 0,0 j 0,0,1) and <(0, 0, 11 -1, 0, 0) ;

this corresponds to the pencil of spheres

"z x;2+(4-o2 *2
i 1

tangent to the hyperplane xn 0 at the origin of En, suitably oriented,
as in 4.2. Let P denote the isotropy subgroup of /0. Then
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G/P space of lines in !P+1
space of pencils of mutually tangent oriented spheres in En

— space of oriented co-directions in complex En.

The Lie algebra g of G consists of (n + 3) by (n + 3) matrices X for which
lXA + AX — 0. The matrices of g are of the form

\ b i c1 dx

n by n skew-

symmetric

I bn-i cn_i dn_1

I
bn cn dn

bi K j Oed
2d1 2dn_1 2dn j o(N1

— 2c1 2c„_1 2cn | — 2 c 0 — e

P consists of those elements of G which send the subspace of C/,+3 spanned
by

'(0,..., 0,0 jo, 0,1) and f(0,..., 0,1 j -1, 0, 0)

into itself; the Lie algebra p of P consists of those elements of g which do
the same. Hence, the matrices of p are of the form

bt Ci 0

(n — 1) by — 1)

skew-symmetric

K~ 1 &n-1 0

-bt... 0 bn ^

bi i bn \ Oed
0 - 0 -2d — 2d e 0

_ 2c! 2c„_! 2c„ j — 2c 0 —e
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Note that g and p have dimensions - + 3) (n + 2) and - (n — 1) (« 2)

+ 2« + 3 -0+3) (n + 2) - 2« + 1, respectively, in agreement with

GjP having dimension 2n~1.

4.4.For n>2, set n+ 3 21+ 1 or 2/ according as n is even or

odd. g is of type 5, or D„ I >2and I>3 respectively.

For Cartan subalgebra I) of g take matrices of the form

II -diag

0 hx

-h1 0

0 /j,_2

— hi-2 0

0 hi —i00

0 0 0

0 0 0

0 0 0

the first row and column occur only in case Bt, it is suppressed for case Dt.

The Killing form of g is < X, Y}1) tr (X Y), but we replace this

with < X,Y>- tr XY)forconvenience.

Let Winp be

W=

- 0 0 0

0 0 0

0 0-
1

— 0
2

0

0

0

0
1

- 0
2

0 ' 0 0 0

-i - 1 0 0

L'Enseignement mathém., t. XXV, fasc. 1-2. 7
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For if in I) we have [if, PF] - (hl-1+hl) PF, so p (H) - (hl^1+hl)
is a root. of g with respect to I) and W Ep is the corresponding root
vector.

For X in g as described in 4.3, direct calculation shows [X, W] 0

implies X is in p and bn + e 0; thus the centralizer of PF in g consists
of those elements of p with bn + e 0. For X in p now, the same calculation

gives [X', PF] - (Z>n + e) PF, so [X, PF] p (X) PF with p extended

to p by p (X) — (bn + e). Finally, PF is orthogonal to p with respect
to the Killing form. Hence, (a\ c\ b') of 2.7 are satisfied, and PF is the element
of g giving the contact structure on G/P.

The origin of the element PF is not immediately evident. It was obtained
by determining the maximal root and corresponding root vector for Lie
algebras of type Bx and Dt when the quadratic form is

to + ^titi+i + ••• +

and then passing to the form

(+ + cc„ — A2 — pv

by conjugating by the element of PSL (n + 3 ; C) which corresponds to the

"line-sphere transformation". This will be described further in the next
section.

4.5. Let rrt be the (In— l)-dimensional supplement to p in g consisting
of matrices of the form

-cTli bx 0 dx

0

ia1 K-1 0 dn_t

fcj bn.1 0 oO

bx bn—x0 Oo

2dl 2d„_1 2dn -2dn 0 0

oo.o o o o
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cf. 2.12. For Xin m we have

X2

0 0

-bb bb 0 bd

-bb bb 0 bd

0 -2bd 2bd0 2

0 Öoo

where -

bb"Y bt2, bdbA, dd "Z
i 1 i 1 i 1

The product of any three matrices of m is zero. Especially,

exp Xl„+3 + X + yX2.
In order to establish classically identifiable coordinates on G/P as

in 2.12, we must determine X in m so that (exp X) • /0 is the line of !F"+1
described in 4.2. With X in m as above, (exp X) • 10 is the line joining the
points

(exp X)

— 0 - d±

6 dn-1

0 dn
1

+. — bd
2

0 d„ + ~bd
2

0 dd

_ i _ 1

and
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(exp X) '

0
iH

<N1

0 -26.-1

1 1

-1 1 (—1« I C5-

0 4 d„—

0 0

On this line we can identify the point sphere when X - 0, giving

d^

dn-1

dn + — bd
2

dn + — bd
2

dd

1

dn + ~~ bd
+ 2

1 + bb

1rH
<N1 ~~ ~

-26„-i *n- 1

1 - bb

1T-H1 0

4dn — 2bd XX

o _ 1

and the incident oriented hyperplane when v 0, giving
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- -2bl

~A-
1 -

-1 -b

4 d„— 2

0

Unit-X

-V
2ux

0

uu

These equations will be satisfied if be we impose the condition ^juu 1 +bb
on uu, or

Mi - 2 bt,1 -
cQ

i 1, 2,..., n— 1, and then set

bi -—

i 1,2, n — 1di — xi ^
5

1 n_1 1
dn T E "iXi + — X„

i 1 ^

Thus, this choice of Xestablishes the classically identifiable coordinates

x1(xn, uu unon G/Pas in 2.12 and 4.2.

4.6.From 2.12, the form coonG/P is obtained as

ro < W,(expA")-1 (/(exp >

with (exp X)"1 d(expA') dX-— [X, dX]

Take X as in 4.5 and let the entries of be denoted as those of X with
primes affixed. Then
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(exp X)1 d (exp X)

-V

V 1 o

V 0 J/

bB_ j 0 _ j

0 0 <iB' —— c" 2

where

V 6',-i 0

2d1'„.2d'B_i 2d'B-c

0 0 0

«-1
c I (M/-4V),

/=!

o oj; — c
2

-2dnr ~h c 0 0

0 0 0

and consequently, from the definition of W in 4.4, 2d'n. Using the
expressions in 4.5 for bu h„_1; dt,..., d„ in terms of xu xn, uu w„,
we obtain

»-1 r 1 "_1 1
co- X UidXi - I 1 - — £ Mj2

i "-1
or, since 1 — — £ iq2 uB>

4 t- 1

co — dx± + + un dxn). •

This identifies the contact structure with the classical one as in 2.12 and 4.2.

4.7. The real contact structure on the (In - l)-dimensional space of
oriented co-direction in real Euclidean space En is described by viewing
all quantities in the foregoing discussion as being real. Especially, G0

of 2.11 is the two-component centerless group PSO (A ; R) consisting of
real contact automorphisms.
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5. The line-sphere transformation

The homogeneous contact manifold of co-directions in complex
projective space P3, obtained from the simple complex Lie algebra of type
A3, must coinside with that of oriented co-directions in complex Euclidean

space E3, obtained from the algebra of type Z)3, in view of the isomorphisms
A3 D3. To exhibit this explicitly, we introduce a third homogeneous
contact manifold in Terms of which both of these can be conveniently
described, namely, the space of lines in the quadric Q4 in P5 of Section 1.

5.1. We carry out the construction of 2.10 for the simple complex
Lie algebras of type Bt and Dh making the restriction to type D3 later.

Let g o (A; C), complex square matrices Xfor which tXA + AX 0,
where

10 0

rH

'

oo

oy—io

- o i, -
A —

r

-h o_

in case B,

or

in case Dl }

that is, the quadratic form defining gis
fo2 + 2£i£/+i + +

or
2^1^ + 1 + + 2^2*

respectively [4, (16.3) and (16.4)].
We exhibit the details of the construction for the case of Dt. For Bt

one need only carry along an additional initial row and column in the
matrices, as well as the corresponding roots; the conclusions are the same.

Thus g consists of 2/ by 21 matrices of the form

^3 _



— 104 —

where X2 is / by / and arbitrary and X2 and are / by / and skew-
symmetric. For Cartan subalgebra ï) of g take diagonal matrices H of the
form

H diag(A1,h, j -hu...,
Let ö;, i — 1, 2,I be the linear function on I) which assigns to
H : <5; (H) ht. The roots of g with respect to 1) are

± St ±ôji,j 1,2,...,/
and i

and the root vector Ea corresponding to the root a is

ESi-öj -

i+öj

E_>

Eu

0

0

0

0

— EjiEij

0

Eji

Eu-Eji

0

0

0

' ^ j'

i <j

i <j,

where Eu is the Iby Imatrix with 1 in the i'h row and column and 0^
elsewhere [4, (16.3)]. A system of simple roots is

<$! — ô2, ô2 —ô3,...,— and — — ô2,

(this is not the same choice as in [4, (16.3)]), for which the maximal root
is

p— — <5,,

(4, App., Table E], The Killing form of g is < T> (2/-2) tr (XY),
but we replace this with < Z, T> - i tr (IF) for convenience. Then

the Hx in I) are given by

H±ôi±ôj diag(0,..., 0, ±1, 0,..., Ö, +1, 0,..., 01

where the ± 1j occur in the i'h and jth entries and the second / entries are
the negatives of the first / entries. Especially,

H„=diag(0,..„ 0,-1,-1 j 0,..., 0,1,1).



— 105 —

It is now straightforward to determine for which roots a we have

< Hp, Ha > > 0 and find that p in (i) of 2.9 consists of matrices of the

form
arbitrary 0 0 "

negative (1-2)by (1-2)
transpose skew-

of lower | symmetric Ö Ö

right 0 __ 0 0 0

| 0 0 0 0

I * * 0

arbitrary | | I

I by I || II
skew- Ii I 0

symmetric j j *
I * *

where the starred entries are arbitrary.

5.2. The connected centerless simple group G PSO (A; C) is transitive

on the lines of the quadric Q2l~2

£i £i+1 + ••• + i 0

in p2*-1 by Witt's theorem. The Lié algebra of the isotropy subgroup
of the line l0 joining

f(0,..., 0,1,0) and f(0,..., 0, 0, 1)

is p. Hence

G/P space of lines in Q2l~2.

The element W Ep of p giving the contact structure on G/P, as in 2.7, is

0 ' i 0

w o

0

0 -1
_ 1 o

0

Ö

*



— 106 —

In general, the construction of 2.10 gives the l)-dimensional
homogeneous contact manifold of lines in the quadric Qn+1 in Pn+2,
where Qn+1is

^O2 + +i + ••• + 2^21 0

in case Bt when n is even, n + 3 2/+1, and Qn+1 is above in
case D, when n is odd, n+ 3 2/; n>2.

The real contact structure on the (2 — 1) dimensional space of lines of
12 in real projective space pn+2 is described by viewing all quantities
in the foregoing discussion as being real. Especially, G0 of 2.11 is the
one- or two- component centerless group R) consisting of real
contact automorphisms.

5.3.The line joining * 1 (x0, xt, x2, x3) and '
0, y3)

in complex projective space P3 has Plücker coordinates Xiyj - f.
These coordinates are the coefficients of the bivector X a with respect
to the basis

a e2 e3 a e2 a e3 e0 a e3 e0 a e2, e0 a el

where e0 '(1, 0, 0, 0),..., e3 ' (0, 0, 0, 1), and satisfy

P01P23 +P02P3I + P03Pl2 0;
[6, §69], If we set

7 Pl2 5 ^2 P31 J £3 P23

^4 P03 £5P02 > ^6 Pol

we have that the lines of P3 correspond to the points of the quadric Q4

Ç1Ç4 + £2^5 + ^3^6 =0
in P5. Two lines of P3 intersect exactly when their corresponding points
on Q4 are conjugate, that is, the line joining these points lies entirely in 124.

To a point x in P3 we associate all lines of P3 incident with x and hence
a plane lying in 124. To a plane u in P3 we associated all lines of P3 lying
in u and hence a plane lying in Q4. These two families of planes doubly
rule Q4. To a surface element or co-direction in P3, that is, a point x and
incident plane u, is then associated all lines of P3 lying in u and incident
with x. In Q4 this corresponds to the intersection of the planes corresponding
to x and u and is a line. Hence, the 5-dimensional spaces of codirections
in P3 and lines in £24 correspond naturally.
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Note that the co-direction in P3 consisting of the point x0
1 (1, 0, 0, 0)

and the incident plane u0 : x3 0 in 3.2 corresponds to the line l0 of
Q4 joining the points * (0, 0, 05 0, 1, 0) and * (0, 0, 0, 0, 0, 1) in 5.2. For,

to the co-direction (x0, u0) is associated all lines of P3 joining x0 and a

point y ' (.y0, yu y2, 0) of u0 ; such a line has Plücker coordinates

£i 0, Ç2 0, £3 0,

U o, {5 y2 > U yi *

and corresponds to a point of Q4 lying on /0.

The projectivity g in PSL (4 ; C)

x a y gx a gy, a projectivity of P5

one obtains the isomorphism A3 ~ D3

permutes the lines of P3 by
which preserves Q4. In this way

PSL(4; C) cz PSO (A; C), A
0 U

1, 0

[4, (25.8.4') ]. The spaces of co-directions in P3 and lines in Q4 are

homogeneous under PSL (4; C) and PSO (A; C) respectively; hence the

correspondence between these spaces is as homogeneous spaces. In fact, since

(x0, u0) and l0 correspond, their isotropy subgroups, as described in 3.2

and 5.2, correspond under the isomorphism.
From the isomorphism of the groups, we obtain the isomorphism of

the Lie algebras st (4; C) ^ o (A; C), where Xin $1 (4; C) is sent to the
linear transformation x a y -» (Xx) a y + x a (Xy) in o (A; C). With
X — (iatj), ij 0, 1, 2, 3, the matrix of this transformation with respect
to the basis et a ej is

*11 + *22 ~~*23 *13 0 *10 *20

~~*32 a ii + *33 *12 — *io 0 *30

*31 *21 *22 +*33 *20 — *30 0

0 *01 *02 *00 +*33 *32 *31

*01 0 *03 *23 *00 +*22 *21

0Q1 *03 0 *13 *12 *00 +*11
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this describes the isomorphism explicitly. Under this isomorphism, the
Lie algebras of the isotropy subgroups of (x0, u0) and /0, as in 3.1 and
5.1, correspond. Moreover, the element

of si (4; C

— 0 0 0 1 —

0 0 0 0

0 0 0 0

1 O 0 0 1o
is sent into the element

O O

0 0 0

0
O 0 1

.01 0

of o(A; C).

Since these are the root vectors for the maximal roots which determine
the contact structures, as in 3.4 and 5.2, we conclude:

The 5-dimensional manifolds of co-directions in P3 and lines in ß4
are isomorphic as algebraic homogeneous contact manifolds.

This isomorphism holds for the real contact manifolds also; cf. 3.5
and 5.2. The real connected centerless groups (4; R) and PSO (A; R)
are isomorphic; each consists of the elements fixed under complex
conjugation of matrix entries.

5.4.The algebraic homogeneous contact manifolds of lines in the
quadrics Wn+l and Q"+1, 4.3 and 5.2, are isomorphic since they are both
obtained from the simple complex Lie algebra of type B, or Dt by the
construction of 2.10. This isomorphism can be exhibited explicitly by
means of a contact transformation which reduces to the line-sphere
transformation, as described in Section 1, when =3.

Throughout, unprimed quantities refer to ß"+1 and primed quantities
to îf"+1. Set n+ 3 21+ 1 or 21 according as n is even or odd; n 2.
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Thus,

G PSO (A;C),

1 0 0

0 0 1,

0 1; 0

or

0 1,

h 0

and

G' PSO (A'; C),

2. 1„ 0

<N 0 0

0 0 0 -1

0 -1 0

These are groups of projectivities preserving ß and ¥"• respectively,
in Pn+2.

In case n is odd, the transformation which we consider is

£l «i + ^2

£2 «3 + 0C4

£l+1 — al "* >/ 1

^1 + 2 a3 ~~ \/ — 1

a2

'4

£>21—2 a»-2 - V 1 a«-l
21-1 III

£21 r*III
rn+1

£1-2 — an-2 + V ~ 1 an-l
£1-1 — a„ + X

P

This is a projectivity of P"+2 which sends the quadric f
o^2 + + a„2 - I2 - nv =0

into the quadric ß"+1

2£I£Î+I + ••• + 25^2. 0 •

In case n is even, the first equation of the transformation is £0
and the remaining ones are like the above.

As before, we exhibit the details of the calculations for the case of
n odd. For n even one need only carry along an additional initial row
and column in the matrices; the conclusions are unchanged.

The matrix T of the transformation is



T
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B 0

1 1 0

0

0 0 1

B 0

1 -1 0
0

0 0 0

where B is the (1-2) by (2/-4) matrix

1

B

0

0

0

-1

1 V-l _i
and B is its complex conjugate; T has inverse

T~i

0 'B O 1

1 1 0 1 0

T 0 1 0 0 -1 0
0 2 0 0 •

0 0 0 -2
By direct calculation we ascertain the following:

(0 — tTAT and hence G' — T1 G and G' are conjugate,
but do not coincide, in PSL (n + 3 ; C). As a consequence, g' T~1qT.

(2) /o T_1l0; the line l0 in Qn+1 joining

'(0,..., 0,1,0) and '(0, ...,0,0,1)
is sent to the line l0' of f"+1 joining



Ill
<(0, ...,0,0 j 0,0,1) and '(0, ...,0, l.j -1,0,0).

Hence their isotropy subgroups, as in 5.2 and 4.3 are conjugate:

pt p-i p j a consequence, p' T'1 p T.

(3) The Cartan subalgebras of g and g' in 5.1 and 4.4 are conjugate:

ty T'1 J) T. In fact, for

H diag (hl9..., hx

in I), we have

hj)

T 1 HT diag
0

J-lh

0 hl^.1 0 0

hl_1 0 0 0

0 0 hx 0

0 0 0 -h

o -\/ — 1Ä/ — 2

_-V~lÄ,-2 0

in I)'.

4) The elements IF and IF' of the Lie algebras which give the contact
structures on G/P and G'/P', as in 5.2 and 4.4, are conjugate:
W T-1 WT. We conclude:

The {In — l)-dimensional manifolds of lines in Qn+1 and lines in Wn+i

are isomorphic as algebraic homogeneous contact manifolds. The isomorphism

is a consequence of the projectivity T carrying Wn+1 into Qn+1.

T sends lines of Wn+1 into lines of Qn+1 and is a contact transformation.

5.5. G0 PSO (A; R) is a real form of G ; it consists of the elements
of G fixed under the conjugation g -> g of G, complex conjugation of
the matrix entries of g. The Cartan subalgebra I) of g, as in 5.1, is stable
and the maximal root p -öl„1 - ôt is real. With P0 G0nP, we
obtain from 2.11 the real contact manifold

GJPq space of lines in Qn+1 in real Pn+2,
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a real form of G\P\ cf. 5.2. The same remarks apply to the real form

Gq PSO(A';R) of G' for the conjugation g' g'. With n P',

we obtain the real contact manifold

G'JP'o space of lines in W+1 in real P"+2

space of pencils of mutually tangent oriented spheres in
real En

=spaceof oriented co-directions in real E",

a real form of G/P; cf. 4.7.

Since G' T~x G T, we can exhibit G'q/P'o, as well as G0/P0, as a real

form of the complex contact manifold G/P. T G0 P 1 is the real form of
G TG' T'1 consisting of the elements fixed under the conjugation
obtained by transporting the conjugation g' —> g' of G' to G, namely

9 T (T~~1gT)

where STT i. In the case of n odd,

S

- 0 0 If—2 0

0 12 0 0

h-2 0 0 0

_
0 0 0 12

-

in the case of n even, S has an additional initial row and column with a

1 in their common first entry and Os elsewhere. * and S2 l„+3,

so the complex conjugation Ç -> preserves the quadric A

point or line of Qn+1 is fixed under this conjugation exactly if it is the image

under T of a real point or line of 'Pn+1. The latter constitute the orbit

on Qn+1 of T Go T~l. The isotropy subgroup in TG'0T~l of the line l0

of Qn+1is TGq T~xn P TP'0T-1.Furthermore, the Cartan subalgebra

I) of g in 5.1 is stable under the conjugation X->G"1X5'ofg;in fact, for

H diag (h1,...,hl|— 7il5..., —

in I), we have

S~XH S diag — Ej,..., —hi-2> ^i-i> j h/-2> — ^j-i>
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in case of n odd; the maximal root p — —Sl^1 —öt is real, p (S~x H S)

p (H). Hence, the contact structure on T G/0T~"1jTP/0T~1 is that
obtained from G/P by 2.11. We conclude:

G0/P0 and T GqT'1/!PqT'1, the latter isomorphic to G'0/P'0, are

two reals forms of the complex contact manifold G/P.

5.6. We observed in 5.3 that the space of co-directions in complex
projective space P3, by means of Pliicker's line geometry, is isomorphic
to the space of lines in the quadric Q4 in complex P5, and that this
isomorphism makes real line geometry correspond to a real form of Q4.

We found in 5.4 and 5.5 that the space of oriented co-directions in complex
Euclidean space E3 of Lie's higher sphere geometry, which is the space
of lines in the quadric P4 in complex P5, is isomorphic to the space of
lines in the quadric Q4 also, and that this isomorphism makes real sphere
geometry correspond to a second real form of Q4. That is, real line geometry
and real sphere geometry are two distinct real forms of complex line
geometry. The line-sphere transformation establishes the isomorphism
of the spaces of lines in W4 and lines in Q4. The former places real sphere
geometry in the foreground, the latter, real line geometry.

5.7. The isomorphism of 5.3 may be used to describe sphere geometry
in terms of co-directions in complex P3. Real sphere geometry then leads
lo the real form PSU (2,2) of PSL (4; C).
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