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Characterization Allim r ~ 2 vol (X (r)) is finite.
r->0

Let co dx a dy a dz, and note that co a ö5 is 8/z times the volume
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B. Nine characterizations of simple critical points

We switch our attention from the analytic set defined by the zero locus
of an analytic function f (x,y,z)to the function itself and the nature of its
critical point. We also generalize to functions / (z0,z„) of an arbitrary
number of variables. The characterizations in the following theorem will
start in Section 9.

Theorem B. Let f(z0,...,z„) with n 1 be the germ at the origin .0
ofa complex analytic function, and suppose further that f (0) - 0 and that 0
is an isolated critical point of f. Then Characterizations B1 through B9 are
equivalent.

8. The classification of right equivalence classes

Let (S be the set of germs/at the origin 0 of complex analytic functions
on Cn+1. (In other words, (9 is just the ring C {z0,z„} of convergent
power series.) The ring & is local with maximal ideal

m {/e<P:/(0) 0}.
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Let

Af-lll
\dz0'";'dz,

be the ideal in 6 generated by the partial derivatives of/
Lemma 8.1. A,germ/ in m has an isolated critical point at 0 if and only

if there is a k such that mk cz Af c= rrt.

Proof. The germ /has a critical point af 0 if and only if fem2, or
equivalently, Af cz m. If this critical point is isolated, then the origin is an
isolated zero of the functions df/dz0,dfjdzn. This is equivalent to saying
that the set of common zeros of all the functions in the ideal Af equals the
set of common zeros of the ideal rrt. By the Nullstellensatz, there exist
integers /0,..., ln such that zy e Af. Setting k (n+1) max {/0,..., /„}
gives mk cz Af. Conversely, if mk cz Af then the origin is an isolated critical
point. This proves the lemma.

Let J* be the set of all germs in 0 vanishing at the origin and with an
isolated critical point there. (This is the set of finitely-determined germs.)
The Milnor number of a germ/ e $F is.

H dimc (9/Af.

For a comprehensive discussion of \i, see [Orlik 2]. There are many ways
to compute this number, aside from the above formula [Milnor 1, §§7, 10;
A'Campo 1; Laufer 6]. The (right) codimension of/is /x — 1.

Two germs/and g in 0 are right equivalent (written/ ~ if there is a

germ h of a complex analytic automorphism of CM+1 fixing 0 with/ o h

g. The germs/and g are contact equivalent if there is an h as above such
that the ideal generated by/ o h in (9 is equal to the ideal generated by g.
This is equivalent to saying that the analytic sets/"1 (0) and g'1 (0) are
isomorphic. Note that right-equivalent germs are contact equivalent.

Mather, Arnold, and others have classified germs of low Milnor number
under right equivalence. The implicit function theorem shows, for example,
that if/(0) 0 but the derivative of/ does not vanish at 0, then/is right
equivalent to the projection (z0,..., zn) z0. If/(0) 0 and/has a non-
degenerate critical point at 0, then /(z0,..., zn) - z20 + + z2n by the
Morse lemma.

Recall that the k-jet of a germ/in 0 is its power series expansion up to
degree k. A germ fe 0 is k-determined if any germ with the same A:-jet
as / is right equivalent to / In particular, / is right equivalent to its own
<-jet. A germ is finitely determined if it is ^-determined for some k < oo.
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The fundamental lemmas used in the classification are as follows :

Lemma 8.2. If mk+1 a m2 Af then/is ^-determined.

For the proof, see [Arnold 1, Lemma 3.2; Zeeman, Theorem 2.9;
Siersma, p. 8]. Note that m/c_1 c= Af implies that mk + 1

cz m2 Af The
corank of / is defined as n + 1 minus the rank of the Hessian matrix
{(d2fldzidzj) (0)}. The proof of part (a) of the following lemma may
be found in [Arnold 1, Lemma 4.1 ; Siersma Lemma 3.2].

Splitting Lemma 8.3. (a) Let /(z0,..., zn) e & be of corank r + 1.

Then there is a g (z0,..., zr) e m3 such that

f(zo> •••> zn) ~ G (z0> •••, zr).+ z2r+ 1 + + z3

(b) Let g (z0, zr) and g' (z0, zr) e & n m3. If
Q Oo> •••> ^r) ^r +1 ••• "h -^/î ^ Q (z09 •••? "b + 1 "b ••• "b Zn

then

g (z05zr) - ^'(z0,..., zr).

The classification proceeds by low corank and low Milnor number.
A germ of corank 0 is right equivalent to Zq + + z^, a germ of corank 1

and Milnor number k > 1 is right equivalent to zk0+1 + z\ + + z3,

and so forth. The proofs are not hard [Arnold 1, Zeeman, Siersma].
Table 2, for instance, includes all right-equivalence classes of germs with
Milnor number g < 9.

9. Characterizations under right and contact equivalence

Characterization Bl. The germ/is right equivalent to one of the germs
in Table 2a.

Characterization B2. The germ / is contact equivalent to one of the

germs in Table 2a.

When n 2, Characterization B2 is the same as Characterization Al.
Clearly Characterization Bl implies Characterization B2. Since all the

germs in Table 2a are weighted homogeneous (§16), the converse follows
from the next lemma.

Lemma 9.1. Let g be a weighted homogeneous polynomial, and

suppose that a germ/ e is contact equivalent to g. Then /is right equivalent

to g.
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Proof. To say that / is contact equivalent to g means that there is a

germ of an analytic isomorphism h \ (Cn+1, 0) -> (Cn+1, 0) and a function

u: Cn+1 -> C with u (0) ^ 0 such that / u • (g o h). Let h (h°,..., hn)

be the components of h, and suppose that g is weighted homogeneous with
weights (w0,..., wn). Then,

/(z0,..., zn) w(z0,zn) - g (h° (z0,zn),..., hn(z0,..., z„))

g((u(z0, ...,zn))1/wo h°(z0,...,zn),...,
(w(z0, ...,zn))1/w" hn (z0,...5 z;i)).

Hence/is right equivalent to g.

10. Degeneration

Let Jk be the set of &-jets of germs in (9. There is a projection of 0 to
Jk by mapping germs to their power series expansion truncated in degree k.
The ring (9 becomes a topological space by letting a basis of open sets be

inverse images of open sets in Jk, for all k.
The group of germs of analytic automorphisms fixing 0 acts on 09 and

the orbits of this action (right-equivalence orbits) are the right-equivalence
classes. Similarly, there is a contact equivalence group which acts on 0,
and the orbits of this action (contact-equivalence orbits) are the contact
equivalence classes [Mather, §2]. A right-equivalence orbit is always
contained in a contact-equivalence orbit; Lemma 9.1 says that the right-
equivalence orbit of a germ /in Table 2a or b equals its contact-equivalence
orbit.

A subset A of 6 is said to right (or contact) degenerate to a subset B
of (9 if the closure of the right (or contact) equivalence orbit of A contains B.
If A degenerates to B, then B simplifies to A (written A <- B). Right
degeneracy is also called adjacency. For example, when n 0, the germ Zq

right degenerates to the germ zl0 for k < /, since the one-parameter family
tz\ + (1 — t) zl0 is Zq when t 0, and is right-equivalent to z$ when t ^ 0.

All germs of low codimension can be arranged according to right
degeneracy in fascinating tables [Arnold 3; Siersma]. Table 3 lists some (but
not all) of the simplifications that occur. The following proposition is a
principal consequence of the work on degeneration.

Proposition 10.1.

(i) The germs in Table 2a right simplify only to each other.

(ii) The germs in Table 2b right simplify only to the germs in Table 2a.

L'Enseignement mathém., t. XXV, fasc. 1-2. in
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(iii) The germs in Table 2c right simplify only to the germs in Table 2b

and 2a.

(iv) A germ in not right equivalent to a germ in Table 2a, b, or c right
simplifies to a germ in Table 2c.

11. Simple germs and moduli

A gërm f e m is said to be right (or contact) simple if there is a
neighborhood of/ in m intersecting only finitely many right (or contact)
equivalence orbits. In the language of algebraic geometry, a germ / is contact

simple if and only if the versai deformation of/"1 (0) contains only finitely
many isomorphism classes of analytic spaces.

The germs in Table 2a are right and contact simple by Proposition 10.1.

The germs in Table 2b are not contact simple (and hence not right simple):

E6 is a family of cones over non-singular elliptic curves in CP2, En is a

family of four lines through the origin in C2, and E8 is a family of three

parabolas [Arnold 1; Siersma]. Note that the germs of Table 2c form one-
dimensional families under right equivalence, but all members of the

family are contact equivalent [Laufer 4; Siersma p. 54]. Clearly if a germ g

right simplifies to/ and / is not right simple, then g is not right simple ; the

same applies to contact equivalence.

Characterization B3. The germ / is right simple.

Characterization B4. The germ / is contact simple.
The equivalence of Characterizations B1 and B3 follows from

Proposition 10.1 and the above remarks [Arnold 1]. Characterization B3 implies
Characterization B4 by definition. Conversely, a contact simple germ /
which is not right simple right simplifies to a germ in Table 2b (by
Proposition 10.1), but these are not contact simple. Hence/must bp right simple.

The classification of simple germs has recently been extended to complete
intersections [Giusti]. The modality of a germ / is defined in [Arnold 3].

A right-simple germ is zero-modal; all right equivalence classes of 1 and

2-modal germs have been listed [Arnold 2, 3, 5]. Moduli of resolutions of
two-dimensional normal singularities are studied in [Laufer 3, 4]. The following

result provides a connection between Characterizations A2 and B3.

Theorem 11.1 [Randell]. For almost all germs f {x, y, z) (in the sense

of the Newton diagram), the geometric genus p of f~1 (0) is less than or

equal to the modality of f
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12. THE QUADRATIC FORM

Let/(z0,..., z„) be a germ with/(0) 0 and an isolated critical point
at 0 (that is, a germ in #"). There is an a > 0 such that /"1 (0) intersects all

spheres of radius a' about 0 transversally for 0 < a' < a. For suitably small
ô > 0, /"1 (<5') intersects the closed disk D^n+2 of radius a transversally
for all j <5' | < <5. Let

F =f-HS)nD?+z
be the Milnor fiber of/ [Milnor 1]. The set F is a smooth real 2«-manifold
with boundary whose dilfeomorphism type is independent of the choice

of a and ö. Furthermore, Fis (n— l)-connected, and the Milnor number g
of §7 is the rank of Hn (F). The Milnor number is zero if and only if the

germ / has a regular point at 0 [Milnor 1, Corollary 7.3]. The intersection

pairing of F is the integral bilinear form Hn (F) x Hn (F) -> Z defined

by sending (x, y) to (x'u yf) [F], where x' and y' in Hn (F, dF) are Lefschetz
duals to x and y, and [F] in H2n (F, dF) is the orientation class of F given
by the underlying complex structure. The intersection pairing is symmetric
if n is even, and skew symmetric if n is odd. For example, the germ
/(z0, zn) z% + -f z2 has Hn (F) a free cyclic group with generator e,
and (e, e) 2 (—1)"/2 or 0 according as n is even or odd. There are many
methods of computing the intersection pairing in special cases.

By a tensor product theorem [Gabrielov 1; Sakamoto], the Milnor
numbers of/(z0,..., zn) and/(z0,..., z„) + z2+1 + + z2m are equal. The
quadratic form of /(z0, zn) is defined to be the intersection pairing of
the germ /(z0,..., zn) + z2+1 + + z2m where m 2 (mod 4). This is

independent of the choice of m. For example, if n 0 (mod 4) then the
quadratic form of fis the negative of its intersection pairing ; all this follows
from the tensor product theorem. See also [Kauffmann and Neumann].

A germ/ topological^ degenerates to a germ g if there is an rj > 0 and
a family ht of germs for {teC:\t \ < 2rj} with hn <x /, h0 ~ g, and ht of
constant Milnor number for t # 0. Compare [Lê and Ramanujam]. Clearly
right degeneracy implies topological degeneracy.

Lemma 12.1 [Tjurina 1, Theorem 1]. If / topologically degenerates
to g, then there is an injection of Hn (Ff) into Hn (Fg) (where Ff is the
Milnor fiber off and Fg is the Milnor fiber of g), and this injection preserves
the intersection pairing. In particular, if g topologically degenerates to/as
well, then the intersection pairings off and g are isomorphic.
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Characterization B5.The quadratic form of/is negative definite.
The equivalence of Characterizations B1 and B5 is proved in [Tjurina 1],

By explicit computation the quadratic forms of the germs in Table 2a are
shown to be negative definite, and those of Table 2b are shown to be
negative semi-definite. (In fact, the quadratic form of a germ in Table 2a
is isomorphic to the intersection pairing of its minimal resolution, and the

quadratic form of a germ of type EkinTable 2b is isomorphic to the quadratic

form of Ekplusa two-dimensional zero form.) The result then follows
from Proposition 10.1 and Lemma 12.1. When 2, the Milnor fiber Tis
in fact difleomorphic to the minimal resolution M of/-1 (0), since the
singularity of/-1 (0) is an absolutely isolated double point [Brieskorn 1,
Theorem 4; Tjurina 1, Lemma 1],

When n2, the equivalence of Characterizations A2 and B5 follows
from the following result [Durfee 2, Proposition 3.1],

Theorem 12.2. Twice the geometric genus p of (0) equals the
number ofpositive plus the number of zero diagonal elements in a
ization of the intersection pairing over the real numbers.

The classification of germs according to signature of the quadratic
form has been extended in [Arnold 3]; see also [Durfee 2, Proposition 3.3],

13. Nearby Morse functions

A deformation of a germ fe &is a germ C"+1 x C -> C with
g (z, 0) /(z). Choose s and Ô for/as in §11. Then choose >0 such
that for all |*| <,, and I 5'I <3, the set {zeC"+1:g t) Ô'} intersects

Sf+1 transversally and the critical values of g t) for fixed t are
less than <5 in absolute value. A germ / is a nearby Morse function to/if/has only non-degenerate critical points in D]n+2 and there is a deformation
g and a t0with| t0|< gsuch that / (z) (z, t0).

Characterization B6. There is a nearby Morse function to / with one
or two critical values.

In fact, the nearby Morse function has one critical value if and only
if/ is right equivalent to A2,sincethe quadratic form diagram is connected
(§14). This surprising characterization is in [A'Campo 211], where it is
shown that Characterization B1 implies B6, and B6 implies B7 below.
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14. Vanishing cycles

Let/be a germ in SF9 and let / be a nearby Morse function with jll distinct
critical values tu in the disk of radius ö about 0 in C. A path oq in
D] ~~ •••• from ^ to U determines (up to sign) a vanishing cycle öt

in Hn (F). The self-intersection (8i9 ôt) is 2 (-1)"/2 or 0 according as n is

even or odd. Choose paths al5..., ocß in Dj — {tu tß} from <5 to tl9 tß

respectively, such that, the union of the images of the paths is a deformation
retract of Dj ; then the corresponding vanishing cycles öl9..., öß are a basis

of Hn (F) [Brieskorn 4, Appendix]. The basis öi9 öß is called an. ordered

(or distinguished) basis of vanishing cycles if tl9 tß are ordered so that the

loop going once counter-clockwise around the boundary of D\ is homo-
topic in n1 (Dl - {tl9 tß}9 S) to the product ß1 * * ßß, where ßt is
the loop going out oct almost to th around tt counter-clockwise, and back
along at. References for this are [Gabrielov 1, Lamotke, Durfee 1].

Choose an ordered basis of vanishing cycles öl9 ...,öß for the
intersection pairing off (z0,..., zn) + z%+l + + z2, where m 2 (mod 4)
The quadratic form diagram of / with respect to the basis öl9 ...,öß has
vertices vu vß and edges from vt to pj if (ôb ôj) # 0, weighted by (ôi9 ôj)
if (ôi9 ôj) # L This diagram is connected [Lazzeri; Gabrielov 2]. It determines

all the topological information in the singularity if n ^ 2 [Durfee 1].
There are a number of methods of computing these diagrams [A'Campo 21;
Gabrielov 3; Gusein-Zade]. The quadratic form diagrams of the germs of
Table 2 are listed in column 5. Lemma 12.1 can be strengthened to show
that if/ topologically degenerates to g, then some quadratic form diagram
for / is a subdiagram of some quadratic form diagram for g [Siersma,
p. 82].

Characterization B7. There is an ordered basis of vanishing cycles
for/ such that the quadratic form diagram is a (weighted) tree.

It is shown in [A'Campo 211] that Characterizations B1 and B7 are
equivalent. In fact, the quadratic form diagrams for the germs in Table 2a
are the same as the graph of their minimal resolutions (column 3 of
Table 1).

15. The monodromy group

Let/be a germ in &9 and as above choose an ordered basis 819..., Sß of
vanishing cycles for Hm (F), where F is the Milnor fiber of

/(z0,..., z„) T- zn+1 4" + zm

L'Enseignement mathém., t. XXV, fasc. 1-2. 11
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with m ~ 2 (mod 4). The Picard-Lefshetz automorphisms T{ of Hm (F)
for i 1, fi are defined by

Tt (x) x + (<$>, x) <5f.

Another way of writing r;is
T \oX)

sTi (x) x — 2 <5,

OM;) '

which shows that Ttis a reflection in <3; [Lamotke],
The monodromy group of/is the subgroup of the automorphism group

°f Hm F)generated by Tu Tß. This group depends only on f since it
may also be defined as a representation of the braid group of /,which is
the fundamental group of the complement of the bifurcation diagram in
the base space of the versai unfolding of/[Arnold 3, §2.8], (Here is a direct
proof that the monodromy group of / is independent of the choice of
nearby Morse function / and paths alsa„: The set D\ - {tutß) is
the base space of a fiber bundle with fiber so 711 (D2ö - {tu tß}, Ô)

acts on Hm(F).Theimage of // in Aut Hm (F) is since ßu 1,
generate nuthemonodromy group is the image of n, in Aut Hm (F). Thus
the monodromy group is independent of the choice of al5It is
independent of the choice of / since any two nearby Morse functions with y
distinct critical values can be joined by a family of such functions.)

Characterization B8. The monodromy group of/ is finite
Characterization B5 implies Characterization B8 since the

automorphism group of any positive definite integral lattice is finite. In fact,
the monodromy groups are precisely the Coxeter groups of the
corresponding quadratic form diagram. Conversely, [Gabrielov 3] shows that
if a germ / topological^ degenerates to a germ g, then the monodromy
group of/ is a quotient of a subgroup of the monodromy gro'up of p. Since
the monodromy groups of the germs in Table 2b are infinite [Gabrielov 1],

Proposition 10.1 shows that Characterization B8 implies Characterization

Bl.

16. Weighted homogeneous polynomials

A polynomial g(z0,...,z„)isweighted homogeneous if there are positive
rational numbers w0,..., w„ (the weights) such that g (z0,..., z„) may be
written as a sum of monomials z'0°... z'„n with + + ijw„ 1
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[Milnor 1, p. 75; Orlik and Wagreich]. Another way of saying this is that

if the variables zt are weighted by 1 jwb then g is homogeneous of degree one,

that is, g (21/w<>z0,..., X1/Wnzn) kg (z0,..., z„) for all complex numbers À.

All the germs in Table 1 are weighted homogeneous with weights as listed

in Column 7. These germs remain weighted homogeneous upon adding

squares of new variables, each weighted by 2. It is proved in [Saito 1,

Lemma 4.3] that the weights of a germ g are uniquely determined (up to

permutation) by the analytic isomorphism type of g"1 (0).

Characterization B9. The germ /_1(0) is isomorphic to g_1(0),
where g is a weighted homogeneous polynomial with weights wt satisfying
wö1 + + w'1 > n/2.

The equivalence of Characterizations B2 and B9 is proved in [Saito 2,

Satz 2.11]. (The r there is wö1 + + vr"1.)

Appendix I

Nine Characterizations of Almost-Simple Critical Points
(Simple Elliptic Singularities)

Almost-simple critical points can also be characterized in several ways.
The nine characterizations presented in this appendix are analogues of
some of those in the main text.

Theorem C. Let f(z0,..., zn) with n > 2 be the germ at the origin 0

ofa complex analytic function, and suppose further that f (0) 0 and that 0
is an isolated critical point. Then Characterizations CI through C9 are
equivalent.

Characterization CI. The germ / is right equivalent to one of the
germs in Table 2b.

Characterization C2. The germ / is contact equivalent to one of the
germs in Table 2b.

The equivalence of these characterizations follows from Proposition 9.1.
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