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WHY HOLOMORPHY IN INFINITE DIMENSIONS?

by Leopoldo NACHBIN

Ein Mathematiker, der nicht etwas Poet ist, wird nie
ein vollkommener Mathematiker

KARL WEIERSTRASS

1. INTRODUCTION

The study of holomorphic functions in infinite dimensions is an objective
as old in Mathematics as Functional Analysis, and as the idea of systems
with an infinite number of degrees of freedom in Mechanics. It dates back
to the end of the last century. The simple language of normed spaces and of
topological vector spaces became a routine, as a suitable form of linear
algebra in infinite dimensions to be used in Analysis, Geometry and appli-
cations. Thereafter, the theory of holomorphic mappings in infinite dimen-
sions was properly developed as a confluence of ideas and methods orig-
inating mostly from several complex variables, manifold theory and
Functional Analysis. Independently of that, users of sophisticated math-
ematical methods in applications have employed and furthered holomorphy
in infinite dimensions, in fields such as Mathematical Physics and Electrical
Engineering. The present expository article was written by aiming at the
non-specialists, more exactly, at the non-mathematicians. We will use
Weierstrass’ definition as a model for the general case.

2. SOME CLASSICAL MOTIVATIONS

EXAMPLE 1: SPECTRAL THEORY. If Z:E — E is a linear operator on
the complex vector space E of finite dimensionn = 1, 2, ..., the homogeneous
linear equation Z (x) = Ax has at least some solution x € E, x # 0 for at
least some A € C. Equivalently, there is at least some A € C such that A/ — Z
is not invertible in the algebra % (E; E) of all linear operators on E, where /
is the identity mapping of E; the set of all such 1 has at most # elements.
This fact is proved by noticing that A7 — Z is not invertible if and only if,
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by taking determinants, the algebraic equation det (1/—Z) = 0 is satisfied
by 4. Now, we notice that det (A/— Z) is a polynomial in A whose leading
term is A", hence of degree n. By the so-called fundamental theorem of
Algebra, that algebraic equation has at least a solution Ae C; it is clear
that it has at most » such solutions. This result is one of the starting points
of Spectral Theory. A more general form of it is the following one. Let now
Z:E — E be a continuous linear operator on the complex Banach space
E # 0. There is at least some A € C such that Al — Z is not invertible in the
Banach algebra % (F; E) of all continuous linear operators on E, where
is the identity mapping of E. This result is no longer proved as in the finite
dimensional situation, as we no longer have analogues of determinant
theory and of the fundamental theorem of Algebra, as formerly. Since there
is no difference in terms of difficulty in the exposition, we will explain this
aspect in the more general language of Banach algebras. Let then 4 be a
complex Banach algebra with unit 7 # 0; thus 4 is a Banach space and at
the same time an algebra for which || XY || < || X|| - || Y|| if X, Ye 4,
and || I|| = 1. [For instance, if E # 0 is a complex Banach space, then
& (E; E) is a complex Banach algebra with unit 7 # 0 in a natural way.]
The spectrum spt (Z) of Z e A4 is the set of all A € C such that A7l — Z is
not invertible in 4. The Gelfand-Mazur theorem states that spt (Z) is
always nonvoid; it is clear that it is compact in C. How can we prove such
a result without analogues of determinant theory and of a fundamental
theorem of Algebra? Surprisingly enough at first sight, this is accomplished
through a seemingly isolated result in Complex Analysis, known as the
Liouville theorem: if an entire complex valued function of a complex
variable is bounded, then it must be a constant. As a matter of fact, it is
immediately pointed out in Complex Analysis courses that a possible
application of Liouville theorem is to a proof of the fundamental theorem
of Algebra. Coming back to the Gelfand-Mazur theorem, its short but
smart proof goes as follows. Assume that Z has a void spectrum. The vector
valued function Ae C+ (AI—2Z) ' €A of a complex variable is entire,
and it tends to zero at infinity. Thus the function in question must be a
constant, by Liouville theorem, once it is entire and bounded; actually it
must be identically zero as it is a constant and tends to zero at infinity.
However, this is an absurdity as no inverse in 4 can be zero. The above
proof calls for the need of a vector valued Liouville theorem of a complex
variable, which not only is true but may be proved as easily as the scalar
valued one. It is true that we may bypass the vector valued Liouville theorem
by arguing as follows. For every continuous linear form ¢ on A, the scalar
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valued function Ae Cr @ [(AI— Z)_1] e C of a complex variable 1s
entire, and it tends to zero at infinity. By the classical Liouville theorem,
this function is identically zero for every such ¢. By the Hahn-Banach
theorem, if X € A satisfies ¢ (X) = 0 for every such ¢, then X = 0. Thus
(AL— Z)~! = 0 for all Ae C. However, this is an absurdity as no inverse
in A can be zero. This equally nice proof of the Gelfand-Mazur theorem,
via the classical Liouville theorem plus (the unnecessary use of) the Hahn-
Banach theorem is like a good dessert whose recipe the cook does not tell
us!... See Example 1 in Section 3 below.

EXAMPLE 2: OPERATIONAL CALCULUS. As in Example 1, we could
consider the Banach algebra % (E; E) associated to a complex Banach
space E # 0. Since there is no difference in terms of difficulty in the expo-
sition, we will explain this aspect in the more general language of Banach
algebras. Let then A be as in Example 1. If /: C — C is entire, we may con-
sider its Taylor series

f@) = Y -0

about ¢ € C, forany z € C, where a,, = ™ (§)/m! for m e N. It is natural
to define

[o0]

fZ) = ZO an(Z =ED™

for any Z e A. It is easily checked that this definition makes sense, once
| a,,|''™ — 0 as m — oo; and that £ (Z) € 4 does not depend on the choice
of &. Since the function z € C + f (z2) € C is entire, we would like to have a
terminology allowing us to assert that the mapping Ze A+ f(Z)e A4 is
entire too. For a change, consider now the nonvoid open subset 4* < A4
formed by the invertible elements of A4, and the nonvoid open subset
C* < C formed by the nonzero elements of C. Since the function
ze C* > 1/z e C is holomorphic, we would like to have a terminology
allowing us to assert that the mapping Z e A* = Z~! € 4 is holomorphic
too. More generally, let # (U; C) denote the algebra of all holomorphic
functions f: U — C, where U < C is open nonvoid. If fe s (U; C) and J
1s an oriented, rectifiable Jordan contour (formed by an exterior, counter-
clockwise oriented, rectifiable Jordan curve and a finite number of interior,
mutually exterior, clockwise oriented, rectifiable Jordan curves) fitted in
U, we may consider the Cauchy integral
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for any z € U, provided z is surrounded by J. It is natural to define
1
fZ) = ——j f ()L =2Z)""da
2mi ied

for any Z e A such that spt (Z) = U, provided spt (Z) is surrounded
by J. It is easily checked that f(Z) € 4 does not depend on the choice of
such J. The two previous cases are subsumed by the present one. Consider
now the nonvoid open subset AV of 4 formed by all Ze 4 such that
spt (Z) < U. Since the function ze U+ f(z) e C is holomorphic, we
would like to have a terminology allowing us to assert that the mapping
Ze AV f(Z) e A is holomorphic too. This is indeed the case with the
natural definition of holomorphic mappings between normed spaces. See
Example 2 in Section 3 below.

EXAMPLE 3: ORDINARY DIFFERENTIAL EQUATIONS. Consider an open
subset U < C? containing (z,, w,) € C* and a holomorphic function
f: U — C. The classical existence and uniqueness theorem concerning the
ordinary differential equation w’ = f(z, w) reads as follows. If 6 e€R,
& > 0, let B, (z,) be the set of all z e C satisfying | z — z, | < 8. For some
such d, there is a holomorphic function g : B; (z,) — C such that g (z,)
= W, (2,9 (z))e U and g’ (z) = f (2,9 (2)] if z € B; (z,). Moreover, if for
some such 6 we have two holomorphic functions g; : Bs(z,) — C such
that g;(zo) = wo, (2,9;(2))e U and g¢';(z) = f [z,9; (2)] if z€ B;(z,),
where j = 1, 2, then g4 (z) = g, (2) for z € B; (z). By keeping z,, w, fixed,
we would like to have a terminology allowing us to assert that the solution
w = g (z) passing through (z,, wy) of w' = f(z, w) varies holomorphically
with f(z, w). This is done in elementary courses as follows. Consider an
open subset ¥V < C* containing (z,, Wg, Ag) € C* and a holomorphic
function f:V — C. The classical theorem concerning the ordinary dif-
ferential equation w’' = f(z, w, 1) depending on the parameter A reads as
follows. For some 6 € R, 0 > 0, there is a holomorphic function g : B, (z,)
X By (Lo) = C such that g (zg, A) = wy if 1€ B;(Ly), (2,9 (2, A), A eV
and g, (z,4) = f[z,9 (z, }), A] if ze B;(zy), A€ Bs(4,). Likewise if we
have several parameters. We then say that, if an ordinary differential
equation depends holomorphically on the variable, the unknown and the
parameters, then its solution through a fixed point depends holomorphically
on the variable and the parameters. See Example 3 in Section 3 below.
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EXAMPLE 4: IMPLICIT FUNCTION THEOREM. Consider an open subset
U = C? containing (z,, wo) € C* and a holomorphic function f: U — C.
The classical existence and uniqueness theorem concerning the implicit
function equation f (z, w) = 0 reads as follows. Assume that f (z,, wo) = 0
and f',, (zo, Wo) # 0. For some deR, § > 0, there is a holomorphic
function g : B; (z,) = C such that g (zo) = wy, (2,9 (2)) € Uand f (2,9 (2)]
= 0 if z € By (z,). Moreover, if for some such é, we have two holomorphic
functions g, : B; (z,) > C such that g;(zo) = w,, (z,g;(2))e U and
flz,9;(2)] = 0 if zeB;(z,), where j = 1,2, then g;(z)= g, (2) for
z € By (z,). By keeping z,, w, fixed, we would like to have a terminology
allowing us to assert that the solution w = g (z) passing through (z,, wy)
of f(z, w) = 0 varies holomorphically with f (z, w). This is done in elemen-
tary courses as follows. Consider an open subset ¥ = C* containing
(2o, Wo, 4o) € C* and a holomorphic function f: ¥V — C. The classical
theorem concerning the implicit function equation f (z, w, 1) = 0 depending
on the parameter A reads as follows. Assume that f(zo, wy, 4) = 0 and
[ (zo, wo, A) # 01if (24, wo, A) € V. For some § € R, 6 > 0, thereis a holo-
morphic function g : B;(z,) X Bs (1,) = C such that g (zqo, ) = wy if
AeBs(ho), (z,9(z, 1), A)eV and fz,9(z 4,4 =0 if ze B;(zy),
J € Bs (1). Likewise if we have several parameters. We then say that, if an
implicit function equation depends holomorphically on the variable, the
unknown and the parameters, then its solution through a fixed point
depends holomorphically on the variable and the parameters. See Example 4
of Section 3 below.

3. HOLOMORPHIC MAPPINGS

The topological vector spaces language is becoming a routine method
- of expression in Mathematics and certain of its applications, say to Math-
- ematical Physics, Engineering and Economics. Our standard references
~are [6], [13], [15], [17], [31] and [32].

; Let us recall that a complex topological vector space E is a vector space
- which at the same time is a topological space, such that the vector space
- operations (x,y)eE X E+>x + yeE and (4, x)eC X E+> AxeE are
- continuous. A seminorm on a complex vector space E is a function
- i B> Ry suchthato (xy +x;) <o (xy) + a(x)anda (Ax) = | 2] - o (x)
. Xy, X, x€ E, A€ C. We denote by CS (E) the set of all continuous semi-
norms on a topological vector space E. If I' is a nonvoid set of seminorms
on a vector space E, we define the associated topology ., on E by saying
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that X < E is open if, whenever x € X, there are oy, ..., 0, I, ¢ > 0 for
which 1€ FE, o;(t—x) < ¢ for i = 1, ..., n imply that e X. Then E is a
topological vector space if endowed with #.. Which topological vector
spaces do we get this way from arbitrary E and I'? Well, X < E is convex
if, whenever x,, x; € X, AeR, 0 <A <1, then (1-A)x, + Ax;eX. A
topological vector space E is locally convex if the convex neighborhoods of
every x € E form a basis of neighborhoods of x; it suffices to check that at
one point, say the origin. If I" is a nonvoid set of seminorms on a vector
space E, then E endowed with £ is locally convex and I' = CS (E). Con-
versely, if E is a locally convex space, its topology £ is associated to
I' = CS(E), that is & = £ . Hence locally convex spaces are just topo-
logical vector spaces whose topologies are defined by nonvoid sets of semi-
norms. There are basic results, such as the Hahn-Banach theorem, that are
valid for locally convex spaces, but not necessarily for topological vector
spaces. Fortunately, most topological vector spaces that we encounter are
locally convex and have their topologies associated to sets I' at sight. It is
true that there are topological vector spaces that are not locally convex but
are used, say in probability theory, typically L? (1) of a measure u with
0<p<l

Fix the complex locally convex spaces E, F.

If m=1,2,.., let Z,("E; F) be the vector space of all m-linear
mappings of the cartesian power E™ to F; and £, ("E; F) be the vector
subspace of all symmetric such mappings. Here (and in the sequel) the
index “a” stands for “algebraic”, continuity not being assumed. Let
¥ ("E; F) and &, ("E; F) be the vector subspaces of those 4 € &, ("E; F)
and 4 e %, ("E; F) that are continuous, respectively. If m = 0, we set
£,CE;F) = £,CE F) = 2(°E; F) = 4,(°E; F) = F.

Letting 4 € &, ("E; F), x € E, write Ax™ = A(x,..,x)ifm =1,2,..,;
and Ax° = A if m = 0. To every such 4, associate the mapping 4 : E+— F
defined by A4 (x) = Ax™ if xe E. Call 4 the m-homogeneous polynomial
associated to 4. Denote by £, ("E; F) the vector space of all m-homo-
geneous polynomials of E to F associated to all 4 e %, ("E; F); and by
P ("E; F) the vector subspace of all continuous such polynomials. The
linear mappings A€ L, ("E; )+~ Ae ?,("E;F) and Ae % ("E;F)
> Ae P ("E; F) are surjective. Moreover, the linear mappings
Ae £, ("E; F) v+~ Ae P, ("E;F) and Ae ¥ ,("E;F)+ Ae P ("E; F)
are bijective.

Let U < E be open and nonvoid. We say that f: U — F is holomorphic
if, corresponding to every ¢ € U, there are Taylor coefficients 4,, € £, ("E; F)




— 263 —

for m = 0, 1, ... such that, for every fe CS(F ), there is a neighborhood
V of ¢ in U for which
lim B[f () — Y A(x—8] =0

k=0

m-—co

uniformly for x e V. Let o (U; F) be the vector space of all holomorphic
mappings of U to F. If F is a normed space, the definition that f is holo-
morphic means that, corresponding to every ¢ € U, there are 4,, € & ("E; F)
form = 0, 1, ... such that

F0) = % AnG—".

convergence being uniform for x in some neighborhood ¥V of £ in U. In
general, the definition must be given as we phrased it.

If F is a Hausdorff space, the sequence (4,,) of Taylor coefficients of
fes# (U; F) at £ e U is unique. Then

IO WHEEEY

is called the Taylor series of fat £, where x € U. We define the m-differentials
of fat & by
d"f (&) = ml4,,, d"f(§) = mld,

considered as elements of %, ("E;F) and p ("E; F) respectively, for
m = 0,1, .... The Taylor series of f at £ becomes

1
f () = A (@) (=)

Msims
|~ ¥

" f (&) (x—8).

~S

!

3
1l
o
3

EXAMPLE 1: SPECTRAL THEORY. If Fis a complex normed space and
fes# (C; F) is bounded, the vector valued Liouville theorem asserts
that fis a constant; this is proved exactly in the same way as when F' = C,
that is, as in the classical Liouville theorem. This simple result was used in
the proof of the Gelfand-Mazur theorem as given in Example 1 of Section 2.
More generally, if E, F are complex locally convex spaces, F is a Hausdorff
space, and f e o (E; F) is bounded, that is /' (F) is bounded in F, then fis
a constant; this is proved by a simple reduction to the case when £ = C
' and Fis a normed space. We recall that ¥ < Fis bounded in F if, for every
~neighborhood V of 0 in F, there is A € C such that Y < AV.
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EXAMPLE 2: OPERATIONAL CALCULUS. In the notation and termin-
ology of Example 2 of Section 2, once fe s (U; C) is fixed, the mapping
ZeAY - f(Z)e A is indeed holomorphic. All this becomes a more
venturous enterprise in the more general case when, in the notation of
Example 2 of Section 2, E is a locally convex space, or A4 is a locally convex
algebra.

In order to reconsider Examples 3 and 4 of Section 2, we need to de-
scribe an important example of locally convex spaces, namely 5 (K; C),
the space of germs of complex valued functions that are holomorphic
around a fixed nonvoid compact subset K of C". This example became a
routine in Complex Analysis, Functional Analysis and applications. How-
ever, what happened historically may be described as follows. Fantappié
and others studied a lot the so-called analytic functionals, that is functions
whose variable is an analytic (holomorphic) functions. Yet Fantappi¢ did
not know how to introduce and use a natural topology on the spaces of
holomorphic functions that he considered. Accordingly, he had to bypass
this handicap to a certain extent. When Laurent Schwartz developed the
theory of distributions, he naturally considered inductive (direct) limits.
The most basic example of them in his theory is the following one. Once a
nonvoid open subset U < R" is fixed, the vector space Z (U; C) of all
infinitely differentiable complex valued functions on U with compact
supports contained in U is to be looked upon as an inductive limit of the
vector space & (U; C) of all such functions with supports contained in K,
for any compact subset K < U. Next Dieudonné and Schwartz wrote an
article on basic aspects of inductive limits of locally convex spaces. This
led Dias, Grothendieck and Kothe simultaneously to define the natural
topology on # (K; C) as follows.

Fix then a nonvoid compact subset K < C" and consider the union

H[K;C]l = u #(U;C)
U>osK
where U varies over all open subsets of C" containing K. Define an equiv-
alence relation modulo K on that union by considering f'; : U; -» C (i=1, 2)
as equivalent if U, = C" is open containing K and f; e s (U;; C), the
set of points x € U; n U, satisfying f (x;) = f(x,) being a neighborhood
of K in C". Each equivalence class of # [K; C] modulo such an equivalence
relation is called a germ of holomorphic function around K. If f € 5# [K; C],

we denote by [, or simply f, its equivalence class, that is, its germ
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modulo K. Call # (K; C) the quotient space of # [K; C] modulo that
equivalence relation. Then & (K; C) is a vector space in a unique way so

that every mapping f € # (U; C)+> f x € # (K; C) is linear, where U = C”
is open containing K. Denote by #5(U; C) the Banach space of all
fe s (U; C) that are bounded on U, where #'p (U; C) is endowed with
the supremum norm. The natural topology on # (K; C) is defined by the
following inductive limit procedure: it is the largest locally convex topology

on # (K; C) such that each linear mapping f € #'5 (U; C) > f € # (K; C)
is continuous, for every open subset U = C" containing K. We could also
use an alternative form of this definition. The natural topology used on
# (U; C) is the so-called compact-open topology. Then the same natural
topology on # (K; C) may be defined by the following inductive limit
procedure: it is the largest locally convex topology on # (K; C) such that

each linear mapping f € # (U; C) — f~ x € # (K; C) is continuous, for every
open subset U = C" containing K. If K = {z} is reduced to a point
z = (z4, ..., z,) € C", we write # (z; C) = H# (24, ..., 2,; C) for # ({z}; C).

EXAMPLE 3: ORDINARY DIFFERENTIAL EQUATIONS. Let wus resume
notation and terminology of Example 3 of Section 2. The classical existence
and uniqueness theorem for ordinary differential equations allows us to

associate to the germ ]N”e H (z9, Wo; C) of fes# (U; C) at (zy, wy) the
germ gN € H (z4; C) of g € H# (B (z0); C) at z,. It can be proved that the

mapping f € # (zy, wo; C) —g € # (z,; C) is holomorphic. It is really in
this simple way that we should state that the solution passing through
(zo; Wo) depends holomorphically on the differential equation. We see now
how much exposition is needed to express that result in such a simple form.
That is why we bypass such a language problem and state the result in the

weaker classical form involving parameters; as a matter of fact, this is
enough for certain purposes.

EXAMPLE 4: IMPLICIT FUNCTION THEOREM. Let us resume notation
and terminology of Example 4 of Section 2. Let & be the vector subspace

of # (zy, wo; C) formed by all germs .;N’e H (29, wo; C) of fes# (U; C)
at (zg, wo) satisfying f(zo, wy) = 0. Let % be the nonvoid open subset

L’Enseignement mathém., t. XXVI, fasc. 3-4. 18
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of & formed by those germs f which, in addition to the above conditions,
satisfy £, (zo, wo) # 0. The classical existence and uniqueness theorem for

implicit function equations allows us to associate to the germ }e AU of
feH (U; C) at (zy, wy) satisfying f(zy, wo) = 0, f', (2o, W) # 0, the

germ ; € A (29, C) of g e # (B;(z,); C) at z,. It can be proved that the

mapping f € U +— ; € H (z,; C) is holomorphic. We may repeat here some
comments which are analogous to those made at the end of the above
Example 3.

4. CONCLUDING REMARKS

This article was written to attract prospective users in applications of
holomorphy in infinite dimensions.

I have tried to illustrate through four very simple, classical examples,
how the concept of holomorphic mappings in infinite dimensions comes up
naturally in Analysis. The difference between Examples 1 and 2 on one side,
and Examples 3 and 4 on the other side is striking: The first two examples
seem very straightforward, while the last two examples look more sophis-
ticated. However, sophistication in Mathematics is a matter of lack of
habit; I personally am by now so used to dealing with germs of holomorphic
functions that I no longer think of the last two examples as being sophis-
ticated at all. Moreover, dealing long enough with any mathematical con-
cept, particularly in applying it, leads to the development of a sort of
intuition in that respect.

In 1963, I had my first opportunity of visiting Warsaw, and of talking
leisurely to Mazur. I then played a little bit the role of a newspaper reporter
and asked him if he, Banach and other members of the Polish group that
developed Banach space theory, had specific applications in mind. Mazur
answered, without any surprise to me as a mathematician, that the Polish
group was guided by a conscience of the importance of Banach spaces in
Mathematics proper. We witness nowadays how Banach spaces methods
and results spread out in Mathematics and its applications. More accurately,
Banach spaces have even been superseded by locally convex spaces for many
of such goals. Psychologically, it is interesting to notice that the concept of a
Banach space was also emphasized by Norbert Wiener; however Banach
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had a guiding idea to develop a fruitful theory, but that does not seen to
be the case of Wiener in this particular instance. Likewise, the group that
is developing holomorphy in infinite dimensions has been guided by a
feeling of its possible interest in Mathematics proper. A promising direction
of research at present seems to be the study of holomorphy linked to
nuclearity in the sense of Grothendieck; interesting results in this direction
have already been obtained, mainly by Boland and Dineen, but many such
useful methods are to be expected in this area. Holomorphy in infinite
dimensions is being used in Mathematical Physics, say in studying Fock
spaces; and in Electrical Engineering through ideas originated from Volterra.
However, the ties between the existing theory, or the theory to be developed,
and its possible applications, are still loose, the reason being a lack of
suitable interplay between mathematicians and users.

5. SOME BIBLIOGRAPHICAL REFERENCES

The following references consist exclusively of some expository texts,
and the proceedings of meetings. The readers should be able to trace back
further information through them, concerning the various directions in
which holomorphy in infinite dimensions branched off and is used. May I
cite Kiselman in [16] below. He describes a problem in finite dimensions
which was one of his motivations for the use of holomorphy in infinite
dimensions; the problem has to do with the determination of the poly-
nomially convex porters of a continuous linear form on # (C"; C) from
the knowledge of its nonlinear Fourier-Borel transform. Actually, when I
told Kiselman that I was preparing an article of motivation like the present
one, he gladly wrote his article in [16] below, and suggested that the com-
plete title of my article should be “Why Holomorphy in Infinite Dimensions?
Why not?” According to an oral communication that I got from Dieu-
donné, one of the first authors to deal with holomorphy in infinite dimen-
sions was D. Hilbert, in his article “Wesen und Ziele einer Analysis der
unendlichvielen unabhigigen Variablen”, Rendiconti del Circolo Matematico
di Palermo 27, 1909, 59-74, or Gesammelte Abhandlungen IIT, 56-72.
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