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6 F. L. WILLIAMS

2. Induction and reciprocity

The notion of induced representations for finite groups was introduced in
1898 by G. Frobenius in the paper [37]. In the same paper Frobenius established

what is now called the Frobenius reciprocity relation. We recall his basic

construction which is fundamental in the entire theory of group
representations.x)

Let G be a finite group and let P be a subgroup of G. Let n be a representation
of G on a finite dimensional vector space F. That is n: G -> GL (F) is a

homomorphism of G into the group of non-singular endomorphisms of F. We

shall also refer to F as a (left) G module. By restriction F is also a P module.

Conversely there is a functor / which converts P modules to G modules : Given a

P module W the G module IW is defined to be the space of functions f : G -> W

suchthat / (ap) p~l / (a) for every (a, p) in G x P. The action of G on IW is

defined by
(a- f)(x) /(fl_1x)

for (f a, x) in (I W) x G x G. IW is called the G module induced by the P

module W. Induction and restriction are related in the following way.

Theorem 2.1 (Frobenius reciprocity relation, 1898). If W is a P module

and if V is a G module then

HomG (VJW) HomP (F, W).

We wish to consider extensions or analogues of this relation in a wider

context. For this it is most convenient first of all to re-describe the G module I W.

The following "geometric" interpretation of I W is well-known. Consider the

right action of P on G x W given by

(a, w) • pp_1w)

for (a, p, w) in G x P x W. Let

(2.2) Ew orbit space (G x W)/P G x P W.

Let y : Ew G/P be the canonical (well-defined) map [a, w] aP, where [a, w]
is the orbit of (a, w)eG x IF. For each a e G the map w - [a, w] of W to

y ~1 {aP} is a bijection. That is we may identify W as the fibre over each point of

:) For the theory of induced representations of locally compact groups see G. Mackey
[55], [56].
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G/P. G acts naturally on Ew and G/P on the left, y is an equivariant map. Let

T (Ew) be the space of sections of Ew, That is s e T (Ew) is a map from G/P to Ew

satisfying y « s 1 ; hence s maps each point to the fibre over it. F (Ew) is a left G

module :

(2.3) (a- s)(x) a- s (a'1 • x)

for (a, s, x) in G x T (Ew) x G/P. Moreover

Proposition 2.4. There is a natural G module isomorphism s -+ fs of
T{EW) onto IW such that for every a in G, s (aP) [a, fs (a)]. Hence

by Theorem 2.1

(2.5) HomG (V, T (Ew)) HomP (V, W).

This sets the stage for a possible extension of Frobenius. Namely, following
Bott, we consider the following data. G is a complex Lie group, P is a closed

complex Lie subgroup (thus the injection P -> G is holomorphic), and IF is a

finite dimensional holomorphic P module (i.e. for each w in W and / in the

complex dual space of W the map p -+ f {p • w) of P to the complex numbers is

holomorphic). We define Ew exactly as above. Then Ew has the structure of a

holomorphic vector bundle over the complex manifold G/P. Let T (Ew) now
denote the space of C00 sections with the G module structure given by (2.3) and let

rhoi (Ew) denote the G stable subspace of holomorphic sections. Since all of our
data is now holomorphic the most natural question to ask, considering (2.5), is :

When is it true that

(2.6) HomG (V,rhol (Ewj)HomP W)

for a holomorphic G module V (2.6) would then represent an exact
holomorphic analogue of Frobenius reciprocity. It turns out that (2.6) is valid if
the space G/P is sufficiently nice. For example suppose that G/P is a compact
simply connected Kahler manifold. Group theoretically this means that G is a
connected complex semisimple Lie group and P is a parabolic subgroup. Then it
is due to Bott [12] that (2.6) is valid. In fact in [12] Bott proves considerably
more : Let SEW be the sheaf of germs of local holomorphic sections of Ew and let
H* (G/P, SEW) be the cohomology of G/P with coefficients in SEW. Then we have

Theorem 2.7 (R. Bott, 1957). Suppose G is a connected complex semisimple
Lie group and P is a parabolic subgroup of G. Let p be the Lie algebra of P
and let V, W be finite dimensional holomorphic G and P modules
respectively. Then
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(2.8) HomG (V, Hj (G/P, SEW)) Hj (p, p n p, Horn (V, W))

for each j ^ 0.

The bar - denotes conjugation of G with respect to a maximal compact
subgroup K of G and the right hand side of (2.8) is the relative Lie algebra

cohomology of p (in the sense of Hochschild, Serre [44]). Here HJ (G/P, SEW) *)

has the G module structure induced by the left action of G on Ew and Horn (K W)
has the p module structure defined by

(2.9) (x • 4>) (t?) — <\> (x • v) + x • (j) (u)

for (x, <\), v) in p x Horn (V, W) x V.

Remarks, (i) For j 0, H° (p, p n p, Horn (V, W)) is independent of the

subalgebra p n p of p and has the value Horn (V, W)p (the space of invariants)
which is precisely Homp (V, W) HomP (V, W) by (2.9) (P is connected). Also
H° (G/P, SEW) is precisely Thol (Ew). Thus taking; 0 in (2.8) we get

Horn, (V, Thol (Ew)) HomP (V, W)

which is (2.6). This shows that (2.8) represents a rather remarkable extension of
Frobenius reciprocity to higher cohomology. Here the induction functor is

/ : W - H* (G/P, SEW).

(ii) As shown by Bott (2.8) is valid, more generally, for C-spaces G/P in the

sense of Wang [90]. The latter need not be Kahler, as we have assumed for our

purposes.
The functor I in remark (i) can be explicated by the use of differential forms :

Let A0'1 (G/P, Ew) denote the space of Ew valued C00 differential forms on G/P of

pure type (0J). That is
.0j.(r(p_,co g Au'J (G/P, Ew)

assigns to each x e G/P a skew-symmetric j linear map

ov TX(G/Pf x x TX(G/P)C - (Ew)x y"1 {x}

on the complexified tangent space Tx (G/P)c of G/P at x to the fiber {Ew)x over x

such that (a) given smooth vector fields Xl9..., X} on G/P the map

©(*!,..., Xj): x -+ (ùx (Xlx,..., Xjx)

is C00—i.e. it belongs to T (Ew) and (b) for each real number 0,

CO (l/e*!,..,, UeXj)e-^«CD (XU...,X)

^ Since G/P is compact Hj (G/P, SEw) is known to be finite-dimensional.
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UQ Xx cos 0 + sin 0 JXx

and J is the complex structure tensor on G/P. Let d : A0,j — A0,j + 1 denote, as

usual, the Cauchy-Riemann operator so that d2 0. If / is a C00 function on

G/P and X is a C°° vector field on G/P then

(2.10) (df)(X)I [Xf +y/]Since d20 let H-,j(G/P, Ew)denote the corresponding cohomology :
ô

(2.11) HfJ(G/P,Ew)

_
ker Ô:A0>j(G/P, Ew) A0, J +1 Ew)

<3A0,J_1 (G/P, Ew

By Dolbeaulfs theorem [35]

(2.12) Hj (G/P, SEW) Hfj (G/P, Ew).
The induced action of G on (G/P, P^) is given explicitly as follows. First G

acts on A0,J (G/P, P^) by

(2.13) (a • co)x(Lls..., Lj)

ß • coa- ix (dla- ix (Pi),..., dla - ix (Pj))
where

(a, co, x) g G x A0' ; (G/P, P^) x G/P

eachL/ g Px (G/P)c and dlax is the derivative of left translation la : G/P G/P on
G/P at x. Note that (2.13) generalizes the action of G on

F (Ew) - A°'°(G/P,P^)

given in (2.3). Because left translation is holomorphic the diagram

A* J (G/P, Ew)l A0'^'+1(G/P, P^)

n
_ r

A0- j(G/P,Ew)A°-J'+1(G/P, Ew)

is commutative for each a in G. Thus (2.13) induces a well-defined action of G on
H-'j (G/P, P^). We may now write (2.8) as

d

(2.14) HomG (V,HfJ(G/P, Ew)) Hj (p, pop, Horn W)).
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Now assume that W is in fact irreducible. The parabolic subalgebra p has a

decomposition p (pnp) © n into a reductive part p n p and a nilpotent part
n an ideal in p. By general principles

HJ (p, pnp, Horn (V, W)) Hj (n, Horn (V, W))p n p

Hj (n, V*®W)pnp (Hj (n V*) © W)p n ~p

The last statement of equality follows by the irreducibility of W since by Lie's

theorem, W is a trivial n module. Now

(.Hj (n, V*) © W)p n ~p Homp n -p (W*, Hj (n, K*)).

From (2.14) we obtain (see [50]).

Theorem 2.15 (Bott-Kostant reciprocity, 1960). Let G, P be as in Theorem

2.7, let n be the nilradical of the parabolic subalgebra p, and let W be a finite
dimensional irreducible holomorphic P module. Then for any finite dimensional

holomorphic G module V we have

(2.16) HomG (V,H°,J(G/P,Ew)) Homp rip(W*, HJ (n, F*)).

Again pnp is the reductive part of p where the bar denotes conjugation of G

Kc with respect to a maximal compact subgroup K. We refer to (2.16) as "the
debut of n cohomology" Since 1960 it has played some rather important roles in
both finite dimensional and infinite dimensional representation theory. There is

an equivalent version of (2.16): The G module structure on H^,j (G/P, Ew)
induced by (2.13) may be restricted to K. Let K denote, as usual, the equivalence
classes of the irreducible unitary representations of K and let Vn be the

representation space of n e K. Then we have (again for W irreducible).

Theorem 2.17 (B. Kostant). The decomposition of HJ (G/P, Ew) as a K
module is

(2.18) Hf 1 G/P, Ew)K<8>Homp n p
W FJ))

ne K

X. v*»Homp np(W*, HJ (n, VJ).
ne K

In the direct sum on the right hand side the action of K on a summand is n (g) 1 or
7i* © 1 in the second equation.
From (2.18) (or from (2.16)) we see that the multiplicity of an irreducible K
module Vn in Hj (G/P, Ew) is governed precisely by the n cohomology
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Hj (n, V*). Here, by analytic continuation, we consider Vn also as a

representation of the complex Lie algebra of G. Its n module structure is the

restriction thereof to n.

Remarks, (i) In contrast to remark (ii) made earlier, following Theorem 2.7,

Theorems (2.15) and (2.17) do require that G/P should be Kahler.

(ii) One knows that K acts transitively on G/P so that G/P is diffeomorphic

to K/K n P.

Now Kostant in [50] has computed the Lie algebra cohomology groups
Hj (n, V*). Two outstanding consequences of his results, among others, which we

shall briefly discuss are (a) Weyl's character formula and (b) Bott's generalized

Borel-Weil theorem. Suppose more generally that g is any complex semisimple
Lie algebra (for example g could be the Lie algebra of G above). Let h a g be a

Cartan subalgebra of g, let A be the set of non-zero roots of (g, h), and let A+ be a

choice of positive roots. The equivalence classes of finite dimensional irreducible

representations of g (over the complex numbers) correspond univalently to linear

functional A on h which satisfy the condition that 2 ——- is a non-iïegative
(a, a)

integer for each a in A +. That is A is A + dominant integral ; denotes the Killing
form on g. This is Cartan's highest weight theory alluded to in the introduction.
Let 7iA be a finite dimensional irreducible representation of g with corresponding
highest weight A g h*. Its character XA : h - C is defined to be the function H

trace exp nA (H), H eh. This definition is independent of the choice of Cartan
subalgebra h since any two are conjugate. We consider the special "minimal"
parabolic subalgebra pc g whose nilradical is

(2-19) " V
a e A

and whose reductive part is h where ga is the root space of a e A. That is p is just
the Borel subalgebra h +n.LetVA denote the representation space of trA. Then
by restriction to n we again form the Lie algebra cohomology groups HJ VA).
Let 6 denote the adjoint representation of h on An*. Then 0 (8) rrA defines a
representation of h on the cochain complex An* <g) VA. This h action commutes
with the coboundary operator and therefore passes to cohomology. Applying
the Euler-Poincaré principle one gets

dim n

(2.20) £ - 1 y trace exp 0 (g) tta (H)
j 0 \Jn*®VA

dim n

£ - 1 )J trace exp 0 ® nA (H)
j o HJ (n, VA)
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for each H in h. One evaluates the left hand side of (2.20) by general principles and

the right hand side using Kostant's main theorem, Theorem 5.14 of [50].
Actually Theorem 5.14 of [50] gives the module structure of Hj (nu VA) for an

arbitrary parabolic h1 + nl of g with reductive and nilpotent parts hl9 n1

respectively. For the derivation of Weyl's formula only the simplest case p
h + n is needed, where n is given in (2.19). Thus we shall state only a special

case of Kostant's result.

Theorem 2.21 (B. Kostant, 1960). The decomposition of Hj (n, VA) as a h

modale is rr;, > v—*
HJ (n, VA) X VA, a

a e Weyl group W of (g, h) such that / (a) j
where each summand FA CT

in the direct sum is one-dimensional and H eh acts

on VA a by the scalar [a (A + 5) — 6] (H).

Here by definition 20= X a an<^ ' (a) (^e lenQth °f a) is the cardinality of the
a e A

set A+ n a —A + From the remarks following (2.20) and the knowledge of n

cohomology given by Theorem 2.21 one derives Weyl's famous character
formula [93] :

Theorem 2.22 (H. Weyl, 1926). For H eh

X (deta)e[n(A + 8)1(W)

(H)
Y[ (g"<«>/2_ e-«(H)/2)

•

a e A ~l~

The denominator is also given by the sum X (^et a) eic6) {H) (this fact can be
aef

proved too using n cohomology) and det a (—l)/(a). As a corollary of
Theorem 2.22 one obtains Weyl's formula for the dimension of the irreducible
module FA in terms of its highest weight A. The result is

n+ (A+ 8, a)

(2.23) dim Ka aeA^I] (8, a)
a e A

Kostant's result on n cohomology can also be used to derive the generalized
Borel-Weil theorem. Here one may apply formula (2.18) decisively. Let g now
denote the Lie algebra of G. Extend a maximal abelian subalgebra of the Lie

algebra of K to a Cartan subalgebra h of g. Again let À+ c= A be a choice of
positive roots where A is the set of non-zero roots of (g, h) and let 26 X a-
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We choose the parabolic P such that its Lie algebra p contains the Borel

subalgebra h + E g-a' his also, a Cartan subalgebra of the reductive Lie
a G A +

algebra p n p so that we have the decompositions

p (pnp) © n pn + E
_a e A (pnp)

(2.24)

nI g-a
a g A -A (pnp)

where A (pnp) is the set of roots of (pnp, h).

Let W be an irreducible holomorphic P module. Then W is an irreducible

pnp module thereby such that n • W 0. We let A denote its highest weight

relative to the positive system À+ n A (pnp) for p n p. Applying Kostant's n

cohomology theorem to (2.18) one obtains (see [12], [50]).

Theorem 2.25 (R. Bott, 1957). The spaces Hp3 (G/P, Ew) vanishfor all but

at most one j. If
Hp30 (G/P, Ew) # 0

then HTj0 (G/P, Ew) is an irreducible K module.

More precisely we have the following. Let A be the highest weight of W (as

above) relative to the positive roots in the reductive part of P. If (A + 8, a) 0

for some a in A then Hj j (G/P, Ew) 0 for every j. If (A + ô, a) ^ 0 for each a in
A (i.e. A + 5 is regular) there is a unique element a in the Weyl group of (g, h) such

that (a (A + Ô), a) > 0 for every a g A + Then Hpj (G/P, Ew) 0 for j ^ I (a)
where again / (a) is the length of a (see remarks following Theorem 2.21).

Moreover Hp1 (a) (G/P, Ew) is an irreducible K module an irreducible g
module since g is the complexification of the Lie algebra of K) with highest
weight a (A + Ô) — 5 relative to A +

Remarks, (i) By definition of a it follows that

a_1A~ n A+ {a g A+ | (A+ 5, a) < 0}

Also since A is a highest weight (A, a) ^ 0 for

a g A+ n A (pnp) => (A + 5, a) > 0
for

a g A+ n A (pnp).
Hence

{a g A+ I (A + S, a) < 0}

{a g A+ —(A + nA (pnp)) | (A + 8, a) < 0}
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so that l (a) in Theorem 2.25 has the value

I {ocg A+ - (A + nA (pnp)) | (A + 8, oc) < 0} | :).

A+ — A+ n A (pnp)

is the set of roots in the nilradical of the "opposite" parabolic p. Since

(a (A + 8), aa) (A + 5, a) > 0

for a e A+ n A (pnp) (as we have just seen) we also conclude that the Weyl

group element a in Theorem 2.25 satisfies

A" n A (pnp) c a"1 A~

(ii) The irreducible holomorphic P modules W in the statement of Theorem
2.25 can be obtained as follows. Start with an arbitrary irreducible

representation % of P n K on a complex vector space W. Since pnp is the

complexification of the Lie algebra of P n K, n defines a unique irreducible
representation n on p such that n (n) 0. This infinitesimal representation can
be "integrated" to a representation of P since P and P n K have the same

fundamental groups. Thus every irreducible representation n of P n K extends

uniquely to an irreducible holomorphic representation of P. The highest weight
A of n is integral and A+ n A (pnp) dominant. Conversely if G is simply
connected, any integral A eh* which is A+ n A (pnp) dominant is the highest

weight of irreducible representation of P n K and hence is the highest weight of
an irreducible holomorphic representation of P.

(iii) Suppose in particular G is simply connected, p is chosen to be

h + X g-a
a 6 A

and that A is A+ dominant integral. Then in Theorem 2.25 a 1 so that the

irreducible K, G or g module with highest weight A is given by H0*0 (G/P, Ew)

space of holomorphic sections of the line bundle Ew. Indeed dimc W 1

since in this case P n K is abelian. This gives the geometric realization of VA

[11].

l) I S I denotes the cardinality of a set S.
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