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A GEOMETRIC PROOF OF BIEBERBACH'S THEOREMS

ON CRYSTALLOGRAPHIC GROUPS

by Peter Buser

Pour Ariane et Georges

1. Introduction

In 1910 Bieberbach proved two celebrated theorems in response to

Hilbert's 18th problem.

Theorem I. Every discrete group of isometries acting on the n-dimensional

euclidean space R" with compact fundamental domain contains n linearly
independent translations.

Groups which satisfy the hypothesis of Theorem I are called n-dimensional

crystallographic groups.

Theorem II. For each fixed n there are only finitely many isomorphism
classes of n-dimensional crystallographic groups.

Bieberbach's original proof of Theorem I is based on Minkowski's
Theorem on simultaneous rational approximation and is difficult to read.

Shortly after it came out, Frobenius gave a more accessible proof which is

based on an argument using the commutativity of unitary matrices. Fro-
benius's method has, in one form or another, become standard in the

contemporary literature. '

In this note we present a completely different approach to Theorem I
which has its origins in Gromov's work on almost flat manifolds [5].
The new idea is to start with those rigid motions which have a very small
rotation part (cf. § 2 for notation), and then proceed to show that, in fact,
these motions are pure translations. The simplification which results from
this approach is striking.

We also give a new proof of Theorem II which does not run via the
usual algebraic characterization of a crystallographic group. Instead we shall
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use a method which is more in the spirit of Minkowski's geometry of

numbers, from where Bieberbach's original arguments departed.
Since the material is standard, the exposition will be condensed. Yet

some efforts have been made not to frustrate the reader by omitting details.

I would like to express my thanks to Leon Charlap, Bernhard Ruh,

Han Sah and Klaus Dieter Semmler for many stimulating conversations.

2. Rigid motions

In this section we fix the notation and collect the necessary (and

hopefully sufficient) rudiments from Linear Algebra.
We consider R" as an euclidean vector space with the standard inner

product. We use | x | to denote the length of a vector x g R", and

T (x, y) g [0, tu] to denote the angle between two vectors. A rigid motion a

(isometry of R") will be expressed in the form

x i— ax Ax + a (xgR")

where A rot a g 0(n) is an orthogonal map, called the rotation part of a,

and a trans a g R" is a vector, called the translation part.

2.1. The commutator [a, ß] of two rigid motions x i—> ax Ax + a and

x I—> ßx Bx + b is defined as [a, ß] otßa_1ß_1. The following formulae

are easily checked :

rot [a, ß] [A, B]

trans [a, ß] (A — id)b + (id— [A, BJ)b + A(id — B)A~ 1a

2.2. Rotations. For A e 0(n) we define

m(A) max{ | Ax — x | /1 x | | x g R"\{0} }

Note that | Ax — x | ^ m(A) | x | for x g R". The set

(i) Ea { x g R" I I Ax — x I m(A) | x | }

is a non trivial A-invariant subspace. This is immediately checked exce« t

perhaps for the part "x, y g Ea implies x ± y e EA \ This part follows fro l
the equation

2m2{A)(|x| 2 +\y\2) 2(\Ax-x\2 + \Ay-y\2)\ A(x + y) - (x + y)\2

+ I A(x —y)- {x-y)|2< m2(A)(|x+ y| 2 + \x-2)2m2(A) {\x\2 + \y\2)
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Since A is an orthogonal map, the orthogonal complement EA of EA

is also an T-invariant linear subspace of R". We define

(Ü) m^A) max { | Ax — x | / [ x | | xe EA\{0} }

if # {0} and set m1(A) 0 if EA {0}. It follows that

(iii) mL(A) < m(A) if A ^ id

We let x xE + x1, xeeEa, xeeE\ be the orthogonal decomposition

of a vector x with respect to EA and EA. The simple observation

(iv) I Axe - Xe I - m(A) \xE\, {Ax1 - x1 | < m\A) | x1 |

together with (iii), will play a crucial role in the proof of Theorem I.

2.3. Commutator estimate. For A, B e 0(n) we have

m([A, B]) ^ 2m(A) m(B).

Proof. Verify the identity

[A,ß] - id ((A-id)(B-id) - (B-id)(A-id))A-^B~l

From I A~1B~1x \ \ x | it then follows that

I [y4, B~\ x — x I ^ m(A) m(B) \ x | + m(B) m(A) \ x \

for all x e Rn.

2.4. Crystallographic groups. Discreteness and compactness of the
fundamental domain will be used as follows :

A group G of rigid motions in R" is called crystallographic if
(i) for all t > 0 only finitely many a g G have | a | ^ t,

(ii) there is some constant d such that for each xeR" there is an element

iE G satisfying \ a — x \ ^ d.

3. Proof of Theorem I

Now let G be an n-dimensional crystallographic group.

3.i. Lemma A ("Mini Bieberbach"). For each unit vector ue R" and for all
> 0 there exists ß G G satisfying
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fr 7^ 0 £ (m, fr) < Ö m(B) ^ s

Proof. By 2.4 (ii) there exists an element ßfc g G satisfying | bk — k u | ^ d,

for each k 1, 2... The sequence ßx, ß2,... satisfies

I bk I -> °o £ (w, frk) -> 0 (/c —* go)

Since O(n) is compact, we find a subsequence such that the rotation parts

Bk also converge. Consequently there exist i < j such that

HBjBf1) < e, * (u, U «S 5/2, I bt K ^ I bj

The motion x i—> ß^ßf :x BjB f xx + frj — BjB xfr^ has now all the required

properties.

3.2. Lemma B. // a g G satisfies m(A) < -, tfren a is a pwre

translation.

Proof. If G contains elements a satisfying 0 < m(A) ^ we consider

the one for which | a | is a minimum (2.4 (i)). Lemma A (applied to an

arbitrary unit vector u e EA) provides elements ß g G satisfying

(*) fr ^ 0 I fr1 K I fr£ I m(£) < I (m(A)-m1(A))
o

(c.f. 2.2. (iii)). Among these we again consider the one for which | b \

is a minimum ^ 0 Observe that | fr | ^ | a | if ß is not a translate m

by the choice of a.

The commutator ß [a, ß] satisfies

m(B) m([A, BJ) < 2m(A) m(B) ^ m(B)

(2.3), and we have by 2.1

b (A — id)bE H- (A — id)bE + r

r (id — B)b + A(id —

If ß is a translation, then B id B and therefore r 0.

If ß is not a translation, then | a | ^ | fr | (by the choice of a) and therefore

I r I ^ (m(B) + m(B)) | fr | ^ 2m(B) | fr | < 4m(£) | bE \. Hence, in either ca >e,
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Together with 2.2 (iv) we obtain

\SL\< 1
(m(A) + mL(A)) \ bE\<\BE\.

We find that p also satisfies (*), but with \ b\ m(A) \b \ —r < \ b\ a

contradiction.

3.3. End of proof Lemma A provides elements in G with n linearly
1

independent translation parts whose rotation parts are smaller than

By Lemma B these elements are pure translations.

4. Lattices

In this paragraph we collect the rudiments from lattice point theory
which are necessary for the proof of Theorem II. A lattice L is a crystallo-
graphic group which consists only of translations. The elements of L
(lattice points) will be identified with vectors in R". By abuse of notation,
we shall write co w trans co for co g L. It is well known that L is

isomorphic to Z" but this fact will not be used in our proof of Theorem II.
Notice, however that L is abelian and that the minimal distance of lattice
points equals the length of the smallest non-zero element in L.

4.1. Lemma. Let L be a lattice in R" whose elements have pairwise
distances ^ 1, and let N(p) denote the number of lattice points in L
whose distance from the origin is ^ p (p>0). Then

N(p)<(2p+ir.

Proof The open balls of radius ^ around the N(p) lattice points are

pairwise disjoint and all contained in a ball of radius p + ^. Comparing

the volumes we find N(p) (OX p H-
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4.2. Lemma. Let L be a lattice in R" whose elements have pairwise
distances ^ 1 and consider a linear subspace E of R" which is spanned

by k vectors w1,..., wk g L. If a lattice point weL is not contained
in E, then its E1-component w1 has length

I w1 I ^ (3 + |wj +... + |wk|) n.

Proof Let N be the integer part of(3 + |w1| + + |wfc|)'1. IfO < | w1| ^ 1JN,

then 0, w, 2w,..., Nw have distance ^ 1 from E. Adding suitable integer linear

combinations of w1,...,wk to each of these vectors we obtain N + 1 new

pairwise different lattice points whose E1 components have not changed but

whose E components are ^ (|w1| +... + |wÄ|). These N + 1 lattice points have

distance ^ 1 + i (JwilIT — + |wfc|) from the origin, a contradiction to

Lemma 4.1.

5. Proof of Theorem II

For an n-dimensional crystallographic group G we let L(G) be the

subgroup consisting of all pure translations in G. By Theorem I, L(G) is a

lattice in R". The standard observation which is "responsible" for Theorem IÎ
is

5.1. Lemma. If a g G and if w g L(G), then A(w)eL(G\(A rot ot I

Proof Recall that w trans co, co g L(G). Now acoa_1GG is a

translation with translation vector A(w). Hence A(w) g L(G).

5.2. Definition. A crystallographic group is called normal if

(i) the vectors in L(G) have pairwise distances ^ 1

(ii) L(G) contains n linearly independent unit vectors.

We do not ask that the vectors in (ii) generate the entire lattice L(G

Our idea is to count the normal groups. This will suffice due to th

following.

5.3. Proposition. Each crystallographic group G is isomorphic to a normt

crystallographic group.
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Proof. By scaling we may assume that the shortest non zero vector in

L(G) is a unit vector. Now assume by induction that L(G) satisfies 5.2 (i)

and contains k < n unit vectors wq,..., wk which span a /c-dimensional linear

subspace E of R". It remains to find a group G' isomorphic to G such that

1(G) contains k + 1 linearly independent unit vectors and also satisfies

5.2 (i).

If for some a g G and for some wf(i ^ k) the vector A(w,) is not contained

in E, then by Lemma 5.1 g L(G) is already the (/c + l)-st vector and we

are done.

If on the other hand all rotation parts of G leave E—and consequently E1—

invariant, then the affine transformations <I>M given by

O^+ x1) x£ + px1

(p > 0) commute with the rotation parts of G. Therefore, the affine conjugate
(and henceforth isomorphic) groups G^ also act by rigid motions.

Since L(G^) 0^(L(G)), Lemma 4.2 implies that GM violates 5.2 (i) if p > 0

is very small. Hence there exists a minimal p' > 0 such that G^ satisfies
5.2 (i). Since the affine transformations act trivially on E, the shortest

vector in L(G[l)\E must be a unit vector and wl,..., wk e L(G^). Now G^
has the required properties and Proposition 5.3 is proved.

5.4. The proof of Theorem II now proceeds in two steps.

Step 1. Each normal crystallographic group G is uniquely characterized by

a group table ((ii) below).

Proof. Fix n linearly independent unit vectors wx,... wn g L(G) and
consider the sublattice

L {m1w1 + + mnwn \ mY,..., mn e Z}

h is a subgroup of G. In each right coset modulo L of G we select a

representative co whose translation part w has length

(i) I w I ^ - (Inql +... +1wj) -
Since G is discrete (2.4. (i)), there are only finitely many such representatives,
saY ron+1,(oN. Every ocgG can now be expressed in a unique way in
the form

a (m1w1 + + mnwn)G>v
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where n + 1 ^ v < N. Since our L is isomorphic to Z", G is uniquely
determined (up to isomorphism) by the integers mijk, v(/, k) and N which occur

in the table

(ii) Wj(ùk(m1Jkw1+...+ mnJkwn) a>v(M), 1,N
(For i 1,..., n, cof is the translation by w{).

Clearly, the proof of Theorem II will be completed by

Step 2. The absolute values of mijk,v(j,k) and N in (ii) have an upper

bound which depends only on the dimension n (see (iii) and (iv)

below

Proof The euclidean motions cov(j>fc), co^ and cok in (ii) have translation

n
parts of length < - (c.f. (i)). Consequently the translation mljkw1 + + mnjkwn

3n
(D/DfcCD v(j* k) has length In particular,

3 n

\miJkwtl<y,i l,...,n

where wf- is the component of w, perpendicular to the hyperplane E spanned

by Wj,wf_ j, w; +1,w„. By Lemma 4.2 we have | > (n + 2)~". Hence

(iii) I mijkI< y (n + 2)".

Now let us estimate N. The linear transformation A rot a, a e G is

uniquely determined by its images A(wf i 1,..., n. By Lemma 5.1 each A

these images is a unit vector of L(G) and, by Lemma 4.1, one out of it

most 3" candidates. It follows that at most (3")" different rotation pans

occur in G.

If two elements cop and coCT among con+1,..., <% have the same rotation
n n

part, then (OpCO^1 is a vector of length < - + - (c.f. (i)) and, again I y

Lemma 4.1, one out of at most (2n+l)" candidates. Hence

(iv) N ^ n + (3")" • (2n+ l)n.

Since v(i, j) < N, this concludes the proof of Theorem II.
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5 5. Remark. From the preceding proof we can derive the upper bound

exp exp 4n2 for the number of isomorphism classes of n-dimensional crystallographic

groups. The correct numbers for n 1,2, 3,4 are respectively

2, 17, 219, 4783 [4].
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