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measuring devices in the laboratory are by necessity archimedean ordered is

besides the point, for, scales are not connected with the division ring underlying

the space § but with the range R of the probability distributions

/:L1±(ô)-[0, l]cR
that thrive on the lattice Ll ±(§). Remarkably enough, there is a lavish supply
of real valued probability distributions on L± ±(§) for our non-classical

orthomodular spaces § in spite of the teratological nature of the base fields

(cf. Problem 7 in XIII). Independent of any axiomatics there is the fascinating
mathematical problem to classify these probability distributions. No approach
à la Gleason is possible here [8].

The present paper is meant as an introduction to the topic of ortho-
modular quadratic spaces. Attention is restricted to hermitean spaces

(©;< » over valued fields or ordered fields. Let S be the class of all

spaces © which admit a vector space topology that makes < continuous
(Section VIII). For expository purposes our main interest here is in the subclass

Q) c= S of all "definite" spaces (Definition 15): these are the spaces ©

where a norm defined on © via the form < and the valuation (ordering
respectively) satisfies a Cauchy-Schwarz type inequality (Section IV). In both
classes 2), S the spaces satisfying (P^) can be characterized (Theorems 28,

34, 36); these spaces satisfy (P2) as well. This characterization allows to
construct orthomodular spaces at will.

We further give a survey of some older results related to orthomodular
spaces (Section II). We also append a list of open problems.

I. Orthomodular spaces (Terminology)

1.1 Conventions for the whole paper: In this paper we consider
left vector spaces © over division rings k with involution a^a* (anti-
automorphism of k whose square is the identity). © is equipped with an
anisotropic hermitean form < > ; thus by definition for all

a, b, c e ©, a g k :

<cxa + b, c> - a<a, c> + <b, c>, <a, b> <b, a)*, <a, a) 0 iff a 0.

We shall often abreviate "<a, a>" by "<a>". If © is infinite dimensional
there are always subspaces g that are properly contained in their bi-
orthogonals g11: (g1)1 [10; Lemma 3, p. 20]. Let L(©) be the set of
all linear subspaces of © and
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(1) Llx((£): {%em\%
We are interested in the set of splitting subspaces

(2) LJß): {dem+g1 (£}

Clearly Ls((£) c= L1±((£). A hermitean space (£ is called orthomodular iff
Ls L±1. In [6, 7, 9, 10, 18, 20; 31, 32] orthomodular spaces and forms

were termed "hilbertian". However, "hilbertian form" already has a different

meaning in the theory of normed algebras [5, Chap. XV.6] which actually
causes equivocations. We have therefore yielded to the "orthomodular"-
terminology.

In the following k is usually assumed to be a topological division

ring and (£ equipped with a vector space topology x (which means that x

is compatible with the additive group of (£ and scalar multiplication
k x (£ - (£ is continuous) such that the form < on (£ is (separately)
continuous. We then consider the set of closed linear subspaces in ((£, x)

We have L± ±((&) Ç Lc((£) by continuity of the form.

Definition 1. The vector space topology x on ^ is admissible if and

only if L±1(<E) LC(G).

Remark 2. All (infinite dimensional) orthomodular spaces (£ discovered

hitherto carry an admissible topology and this topology is needed to handle

the space. Furthermore, all orthomodular spaces other than classical Hilbert

space are separable in the sense that they contain countable families with

1-dense span. This is quaint. No non-separable orthomodular space has

been discovered so far. Cf. Remark 8.

1.2 Appendix on lattices. These brief remarks are not needed in

order to understand the rest of the paper; however they throw light on

concepts and related problems.
A lattice L is a non-void partially ordered set such that

exist for all pairs (and hence all finite sets) of elements of L. If arbitrary
sets of elements of L admit suprema and infima then L is called complete.

We always assume that L has universal bounds 0 and 1. An element b

is said to cover an element a, a < • b, when a < b and for no c we have

(3) LC((S): {dem|gg}

a V b: sup{a, b},A inf{a, b}
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a < c <b\ atoms are elements that cover 0. A lattice is atomistic when

every non-zero element a is the supremum of all atoms ^ a. The following

property is the covering property : "if p is an atom and a A p 0 then

a < - a V p. Both L((£) and L1±((£) are lattices with respect to Ç whereas

Ls((£) is not, in general, a lattice (cf. [9]). In fact, L((£) and L11((5) are

complete, atomistic and they enjoy the covering property.
An orthocomplementation a i—> a1 on a lattice L is a decreasing involution

with a1 V a 1, a1 A a 0. It follows that (aV b)1 a1 A b1. An ortho-

complemented lattice L is called orthomodular if its elements satisfy [15, p. 780]

(4) a ^ b => b a V (b A a1)

In an orthomodular lattice L we call compatible two elements a, b if
b {b A a) V (b A a1) ; this is the case iff the orthocomplemented lattice

generated by a, b is distributive ([29, (2.25) p. 28]). If 0, 1 are the only
elements compatible with all elements of L then L is called irreducible.

A propositional system is a complete, orthomodular, atomistic lattice that enjoys
the covering property.

The lattice L±1((£) attached to a hermitean space is always
orthocomplemented (recall that we assume the forms to be non-isotropic). If
S is orthomodular, then is an orthomodular lattice, and conversely
(hence the terminology). In fact, one easily verifies :

(5) If Ls((£) L±1((&) then L1±((£) is an irreducible propositional system.

The following converse of (5) is essentially due to G. Birkhoff and
J. v. Neumann [4, Appendix] and R. Baer [2, p. 302] (Cf. [10, p. 45], [23]).

Theorem 3. Let L be any irreducible propositional system of dimension
^4 i.e. there is a chain 0 <a<b<c<d in L). Then L is

L-isomorphic to the lattice L±1(C) of some suitable orthomodular space
S over a suitable division ring k.

This theorem explains the interest that the quantum logic approach
to axiomatic quantum mechanics had taken in propositional systems: they
lead towards the classical interpretation. The rub is that the division
ring k need not be R, C or H as we know since Keller's example [18].
In order to arrive at the classical structures stronger axioms on the lattice
have to be postulated such as, for example, in [12, 33]. The reader interested
in this kind of foundational problems in physics is refered to [3, 12,
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Orthomodular lattices that derive from orthomodular quadratic spaces

make up only a fraction of abstract orthomodular lattices (refer to [13,16,17]).
The orthomodular law (4) is exceedingly enigmatic even if attention is restricted

to orthomodular quadratic spaces. The complexity of the orthomodular
conundrum does not surprise us anymore.

II. Results on orthomodular spaces prior to Keller's discovery

II.1. Results without topological restrictions on (£. We begin

with a classic ([1]).

Theorem 4 (Amemiya-Araki-Piron). Let k be one of R, C, H and

(£ an infinite-dimensional k-vector space equipped with a positive definite
hermitean form < > (relative to the usual involution * in k). Then
(£ is orthomodular iff (£ is complete as a normed space

(||*|| : <*,

i.e. iff (£ is a Hilbert space.

If, in the setting of Thm. 4, we pass to subfields of k then the same

conclusion can be drawn although the proof is much more tricky [9]:

Theorem 5 (Gross-Keller). Let k be an archimedean (Baer-)ordered

*-field ([14, p. 219]) and (£ an infinite dimensional k-vector space equipped

with a positive definite hermitean form. Then the following are equivalent

(i) k is one of R, C, H and (£ is a Hilbert space

(ii) Ls((£) Ll j_((£) i.e. (£ is orthomodular
i_ y

(iii) Lc((£) L1±((£) (c refers to the norm || x || : <at,x}2ek2)

(iv) Lsm Ll j_((E) LffSfi.

Remark 6. In [24] sequence spaces (£ : i2(^) for /c c= H are considered

and equipped with hermitean maps (not forms) (£ x (£ - H. Again, the

lattice of _L-closed subspaces in (£ is orthomodular iff k R, C, or H.

Another attempt to chance upon new orthomodular forms is to replace

the reals by the non-archimedian ordered field *R, a non-standard model

of R. However [28] :


	I. Orthomodular spaces (Terminology)

