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222 A. HILDEBRAND

then

NN MNES) (N
’”(TII)‘ e LT ’“(N)‘x<5)’

and N/5 = 4n/5 €I, is good. We may therefore suppose that at least one of §
values MN +5) and M(N —5) equals 1.

For definiteness we shall assume MN +5) = 1; the other case is treated in
exactly the same way. -

If M\N+3)=1o0or MN+6) = 1,then N + 4el,or N + 5¢1,is good.
But in the remaining case

MN+3) = MN+6) = —1

)52+

so that (N+3)/3 €1, is good.
Thus (3) implies the existence of a good integer in the interval (4),
as we had to show.

we have

4. PROOF OF THE THEOREM, CONCLUSION

So far we have proved that (1) has infinitely many solutions in the cases
€, =€ = €& = land g, = ¢, = g5 = —1. But this obviously implies that
for each of the triples (e, ¢€,,¢€3) = (1,1, —1), (-1, —1,1), (1, —1, —1) and
(—1, 1, 1) there are also infinitely many solutions to (1). It remains therefore
" to consider the triples (1, —1,1) and (—1,1, —1). Since the arguments
in both cases are the same (with +1 and —1 interchan'ged), we shall
confine ourselves to the case (g4, €,, €3) = (1, —1, 1). Accordingly, we call
n = 2 good, whenever ' ~

M+1) = Mn—1) =1, AMn) = —1.

We have to show that there are infinitely many such n.
Suppose, to get a contradiction, that there are only finitely many
good integers, all of them < N, say. Suppose further that

(5) Mn) = 1(mo<n<n,)

holds for some integers no, > my, = 2N,. We shall show that then
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(6) Mn) = U(m;<n<m)

holds for all i > 0, where m; and n; are defined inductively by

3m; + 1 3n; | .
- (7) mi+1:[m12+ ], ni+1:[;:|(l>0)-

This will easily lead to the desired contradiction.
By our assumption (5), (6) holds for i = 0. Assume now that (6) does
not hold for all i > 0, and let i > O be minimal such that (6) holds for i

and fails for i + 1. Thus, for some n € [m;,q,n+1], which we shall fix,
we have Mn) = —1. Write

(8) 2n = 3n’ + 0(8€{0, 1, —1}).

From (7) we get

3m; < 2m;,q < 2n < 2n;4 4 < 3my,

so that

4

_ m,<n <n;,
and hence by (6) (which we assumed to hold for i)
AM3n) = —Mn') = — 1.
Since, by our assumption Mn) = — 1,
M2n) = — Mn) = 1,

we cannot have © = 0 in (8). The arguments in the cases 8 = + 1 being
“identical, we shall henceforth assume that (8) holds with 6 = 1.
We must have

M2(n—1)) = AGn' —1) = — 1,
. since otherwise 3n’ would be good and
3n' = 3m; = 3my > N,,

¥ in contradiction to our assumption. Also, since

, 2 2 2 (T3n,
m<n +1= ’3‘('1‘*‘1) < [g(nin‘i'l)] = [§<[Z]+ 1)} sh,

we have by (6)

M2n+1) = MBI +1) = — M +1) = — 1.
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These two identities imply
Mntl) = — M2(nt1) =

and since Mn) = — 1, we conclude that n(>N,) is good and therefore arrive
at a contradiction.

Thus (5) (with ny>m,>2N,) implies (6) for all i > 0. To derive from
this the desired contradiction, we suppose first that (5) holds for some
ng > my = 2N, satisfying

(9) ‘ .no—mo>3.

In other words, we suppose (for the moment) that there exist four consecutive
integers n > 2N,, for which Mn) = 1. Putting d, = n, — m;, we have, by
the recursion formulae (7),

3 3 2
dioy > 5di =1 =2 d< 3di> (i=0)

Taking into account (9), we obtain by induction in turn

d>=>3 (=0
7 i
dz = 3<g> (120),
and finally
3\ ¢ i 2 3\
>(3) I(1-5)><() wo
‘where

Since on the other hand by (7)

3 i
d; < n; < (") ny (i=0),

we see from (6), that there are arbitrary large values of x, such that

A(n) is constant in the interval [x(1—¢), x], where ¢ = C/n,. But this is
impossible since, for x suﬂimently large every such interval contains integers n
and n’ of the form a ‘
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n o= 4% pn' = 2-49%a,b,c, deN),

| for which |
AMn) =1, M) = —1.

| We therefore have obtained the desired contradiction under the assumption
' that there exist four consecutive integers n = 2N,, for which Mn) = L

! By the part of the theorem already proved, there exist at least three such
| integers. Therefore (5) holds for some my > 2N, with n, = mo + 2, and we

| may now assume that

Mmo—1) = Mmo+3) = — 1.

| 1f m, is odd, then this implies

)\’mo—‘l me0+3 =1,xm0+1 =_1,
2 2 2

{ so that (mo+ 1)/2 > N, is good, in contradiction to our assumption. But if
mg is even, then defining m, and n; by (7), (6) holds for i = 1, and
I we have

B 3(my+2) 3myg
2 2

= 3.

my; = 2Ng,n; — my

Thus we are back in the case already treated.
By contradiction, we therefore conclude that (1) has infinitely many
solutions for (g,,¢€,,¢3) = (1, —1, 1), and the proof of the theorem is

| complete.

5. CONCLUDING REMARKS

In the foregoing proof, the relevant property of the Liouville function
was that Mn) is completely multiplicative and assumes only the values + 1.
* Besides this, we used iny the fact that M2) = M3) = M5) = — 1 and
§ (in the proof of the lemma)

M14) = M16) = 1, M29) = A31) = — 1.

" The proof, as it stands, works for any completely multiplicative function
f(n) = + 1 with these properties. By suitably modifying the proof, it is
possible to cover other classes of multiplicative functions as well.
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