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TREES, TAIL WAGGING AND GROUP PRESENTATIONS

by M. A. Armstrong

The Bass-Serre theorem gives a presentation for a group of automorphisms

of a tree. Like all good theorems it has attracted considerable attention

and there are now several proofs available [4], [3], [1]. ur goa is a

natural elementary proof which makes maximal use of the geometry

the tree.

1. Graphs

A graph X consists of two sets E (directed edges) and (vertices)

and two functions E-> E,et-^êE_Vx V,eI—> (i(e), t(e))

which satisfy I e, e A e and i(ê) for each e e The vertices

t(e) are the initial and terminal vertices of the directed edge e, and e is

the reverse of e. Henceforth we refer to directed edges simply as edges.

A path in X joining vertex u to vertex v is an ordered string of

edges e,e2 - en such that i(e1) u, i(ek+1) for 1 ^ ^
t(en) v. If v- u we have a circuit. A path of the form ee is a round trip

and a circuit which does not contain any round trips will be called a loop.

If any two distinct vertices may be joined by a path then the graph is

connected. A tree is a connected graph which does not contain any loops.

Let Xbea tree. A path in Xisa geodesic if it does not contain

any round trips. Given distinct vertices of there is a unique geodesic

uv which joins u to v.

An action of a group G on a graph X is an action of G on and

on V such that gë gë, i(ge) gi(e), t(ge) and ^ for each

e 6 E.Because group elements are not allowed to reverse edges we have a
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quotient graph X/G. When G acts on X we shall often say that G is a

group of automorphisms of X.
We adopt the usual notation whereby Gx denotes the stabilizer of a

vertex x. If g e G happens to fix x we write gx for the element g thought
of as a member of Gx. Of course Ge denotes the stabilizer of the edge e.

If x is a vertex of e then Ge is a subgroup of Gx.

Suppose G acts on a tree X. If g e G fixes the vertices u, v then it must
fix the whole geodesic uv, since otherwise the image of uv under g would
be a second geodesic from u to v.

2. Lifting edges

Let G be a group of automorphisms of a tree X. Choose a maximal
tree M in X/G and lift it [4, Proposition 1.14] to a subtree T of X.
The vertices of T form a set of representatives for the action of G on
the vertices of X. For each pair of edges f, J from X/G — M select

one, say /, and lift it to an edge e of X which has its initial vertex x
in T. Exactly one vertex z of T lies in the same orbit as t(e) and we
choose an element yf from G that maps z onto t(e). We can now lift /
to This has its initial vertex z in T and yj (Y/)-1 sends the

vertex x of T to its terminal vertex (Figure 1). Finally we extend the

correspondence / - yf over the edges of M by setting yf 1 (the identity
element of G) whenever f e M.

The Bass-Serre theorem [4, Theorem 1.13] gives the following presentation

for G.

(a) Generators. The elements of all the Gw where w is a vertex of T
and the yf where / is an edge of X/G.

(b) Relations. The internal relations of each stabilizer Gw together with

yf 1 if / is an edge of M,

Vf (Y/)"1 and

JfdxJf (Y/0Y/)z where e is the chosen lift of / and geGe.

(If / is an edge of M then z t(e) and the final relation reduces to

gx gz whenever g e Ge).
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Figure 1

3. Tail wagging

With the notation established above let * Gw denote the free product of

the stablizers of the vertices of T, and the free group generated by

symbols Xf,onefor each edge / of X/G. Let be the normal consequence

in (*GW)*F of the words

Xf {f an edge of M),XfXfand

XfgxXj(y-fgyf);1

We shall produce an isomorphism
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^:G^[(*GJ*F]/K.
Choose a vertex v of T as base point. If g e G fixes v set

\|/(0) gvR

where as usual gv is the element g interpreted as a member of Gv. Ii g

moves v then it sends it outside T because no two vertices of T lie in
the same orbit. Let e1 e2 en be the geodesic which joins v to gv and

suppose em is the first edge that is not in T. The path emem+1...en
will be called the tail of v gv. Let x1 be the initial vertex of em. Project

em into X/G to give an edge f1. The canonical lift e1 of ft into X has

its initial vertex in T, so ife1) x±. Choose an element aXl e GX1 which
sends e1 to em. Let

for m+1 ^ k ^ n, and replace e1 e2 en by the new path e*+2 ••• el.
We call this process tail wagging. Our new path begins at

which is a vertex of T and ends at (yy1 axix g)v, see Figure 2. We walk

along it to the first point x2 where it quits T and repeat the above

el (Y/, flx/K

zi '(YÂ el)

^-a-'g)v

ofb;'g)v
*i 1

Figure 2
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procedure. Since we shorten the tail at each step we eventually obtain

a path which lies entirely in T and ends at say

(Tfr üXr-Tf2ax21 °Xld)V

Then ylr aJ/ y~fla"1 gmust fix v,sayax/

We now have

Q axi Jfi — axr yfr av

and we somewhat optimistically define

Mg) ax, hi- aXr hr a" R

4. An inefficient choice

Is \|/ well defined? The geodesic from v to gv is certainly unique, as

is the first point xx where it leaves T and its first edge em outside T.

Both the edge e1 and the group element yfl are now determined by our

original construction. The only ambiguity at this stage is the choice of the

element axleGXl which maps e1 to em. A different choice bxi will give a

path from z, to {yj1 b~^g)vwhich leaves T for the first time at say y2

The first edge outside T will project to an edge f2 of and so on

until eventually we have g expressed as

g Ky^K yK b»

We must show that aXi Xfl aX2 Xf2... aXr Xfr av and bXl by2 bys bv

determine the same left coset of R in (# GW)*F.

Agree to select axi from GX1 so that the tail of the resulting path is as

long as possible. Continue in this way selecting aX2, aX3... so as to maximise

the length of the tail at each stage. We shall compare any other set of

choices with this rather inefficient selection.

Both aXl and bXl map e1 to em, so c a^1 bXl must fix e1. Also,

due to our particular selection of aXl, the geodesic from z, to x2 is

left fixed by yjl cy{l. Therefore
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K hi K h2 - K hsb"R

a*t ht ht a~h h hh h2 K h's

— axt ^"ft htcxi^-/i by22by* hs b"R

a*t ht(y-ftCJfthKlh2 Ks h's KR

a*t hhftcyfth Ki h2 - Ks h's KR

a*t ht KlKl h'2 -Ks h's KR

where a'X2 {y-flcyf)X2. If x2 happens to equal y2 then we simplify this
further to

axi ^/i ax2 by3 V3 - bys h/s bvR

where a"X2 is the product a'X2by2 in GX2. We now compare aX2 with
a'X2 if x2 y2, noting that y/2 1 in this case, or with a"X2 if x2 y2,
and repeat the process. Eventually we obtain

bxi ^/i by2 Xf2 bys bvR — aXl Xj-1 aX2 Xj-2... aXr Xj-r avR

As g aXl y/jL... aXr yfrav axi yfl... aXr yfra"v we see that a"v av. This

completes the proof that \|/ is well defined.

5. Nearest fixed points

To show \|/ is a homomorphism we shall verify

Mhg) Mh)Mg)

under the assumption that h either leaves some vertex of T fixed or is

one of the elements yf. This is sufficient because the elements of the

Gw (w a vertex of T) together with the yf (/ an edge of X/G — M)
form a set of generators for G.

Suppose h fixes the vertex w of T. Walk along the geodesic vw and let x
be the first vertex we meet which is left fixed by h. Then vx is contained

in T, and vx followed by h(xv) is the geodesic from v to hv. This quits T
for the first time at x and we see that

Mh) hxR.
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hx x

Figure 3

Using the geodesic from v to gvwe have Md) axi i - 'Kfr avR in the

usual way. Therefore

\|/(h)\j/(g) K axi7./j... aXr attR

In order to compute i|,(hg)weneed Jhe geodesic from r to

We can construct this as follows, take vhv followed by the image o

v qv under h and remove any round trips. >

If bur does not contain all of FF (Figure 3) then leaves T

for the first time at x. A tail wag of v(hg)v using leads us to a

path which has the same tail as Vgv, then the process continues as for g.

Thus

\|/(%) hx aXl axr ^fr av& WOMfO •

Otherwise Tfî contains all of « (Figure 4) and we split the argument

into three cases.

Figure 4
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(a) v gv stays in T for at least one more edge after x. Then v(hg)v must
leave T at x. As above, a first choice of /i"1 leads to a path with
the same tail as v gv.

(b) v gv and v(hg)v both leave T at x. Then x1 x and we write ax
instead of aXl. A first tail wag of v(hg)v using 77^* u*)1 produces
the same path as a first tail wag of v gv using y-fl a~x. Thus

Mhg) hx ax Xfl aX2 Xf2... aXr Xfr avR

(c) v gv leaves T at x, but v(hg)v stays in T for at least one more
edge after x. Then xt x, yfl 1 and we may as well equate aXl
with h ~1. A first tail wag of v gv using hx gives a path with the

same tail as v(hg)v. Thus

Suppose finally that h yf for some edge / of X/G — M. As usual
e is the chosen lift of / into X with x i(e) e T and z t(yj e). Let y i(y~f e).

The geodesic from v to yfv is made up of Ux followed by e followed by
yf(zv). This leaves T for the first time at x and a single tail wag using

y-f produces zv. Therefore

To obtain the geodesic from v to (yfg)v we follow vyfv by yf(v gv)

and then remove any round trips (Figure 5). If v gv does not contain vy,
then v(yfg)v leaves T for the first time at x and a single tail wag using y-f

Mhg) aX2 Xf2... aXr avR

hxh;1 aX2 Xf2... aXr Xfr avR

Mh)Md)

Mjf) hR

y

V

Figure 5
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produces a path with the same tail as v The process then continues as

for g and

x|;(Y/g) xf aXi\fl...aXrXfravR

Otherwise v gvcontains vy. Then z, Y and we may as we^

take axi1. A first tail wag of Vgv using yf leaves a path with the

same tail as v(y fg)v. Thus

<|i(YfS) «X2 'kfl -a*rkfr UVR

"hf kf ^X2 kJ~2 ®Xr kfr

¥.yf)¥g)

This completes the proof that \)/ is a homomorphism.

Our construction of \|/ ensures that if v|/(gf) R then 1. So v|/

is injective. The cosets hwR (w a vertex of T and h(w) w) and XfR

(f an edge of X/G)togethergenerate [( * GW)*F]/,R. Now \|/(/i) hxR where x

is the nearest fixed point of h to v. But h fixes all of xw so

\|/(h) hxR hwR.

Also

Mr/) kfR

Therefore the image of v|/ is all of [( * GJ*F]/R and we have shown that i
is an isomorphism.

The author would like to thank the members of the Mathematics

Department of the University of Geneva for their hospitality during the

preparation of this article.
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