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§ 4. HECKE ALGEBRAS

In this section we isolate the classical facts about Hecke algebras which
we will need in the next two sections in order to prove the existence of P.
| The knowledgeable reader can thus skip this paragraph and proceed directly

{ to § 5.

Let K be a field and let g € K be some element of K.
~ The Hecke algebra H, over K corresponding to g is the associative
| K-algebra with unit 1, generated by Ty, ... Th-1 subject to the following

relations
5 T,T; = T;T; whenever li—j| =2,
T.T,,,T; = T;i+ TiTis,, and
T? = (q@—UDT: + 4
for all i,je {1, .,n—1}, with of course i < n—2 for the second family of

1 relations.
We see that there is a natural map H, —» H, ., of K-algebras which make

H,.,a(H,, H,)-bimodule. We think of g € K as being fixed once and for all.
Consider also the (H,, H,)-bimodule H, ® H, ®gq,_,H,-

PROPOSITION 4.1. There is a natural map of (H,, H,)-bimodules
®: Hn @ Hn ®Hn_1Hn - Hn+1
| given by o(a+Zb;®c;) = a+ Zb;T,c;.

Moreover, © is an isomorphism.

1 The proof of this proposition will occupy the remainder of this section.
§ We have divided it into seven claims.

CLamM 1. The map ¢ is well defined.
Proof. fue H,,_‘l , then
o(bu®c) = buT,c, and @bQuc) = bTuc. 3

—

A
| %But u is a K-linear combination of monomials in T,,.., T,-, which
commute with T, in H,.,. Hence, buT,c = bT,uc, and so ¢ is well

L defined.
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CLAM 2. The map ¢ is surjective.

We have to show that H,,, is generated as a vector space over K
by the monomials with at most one occurence of T,.

The proof will be by induction on n. Let M be a monomial in
T,,.., T, with two occurences of T, at least. Displaying two consecutive
occurences of T, in M, we write M = M, T,M,T,M;, where we can assume §
that M, is a monomial in T, .., T,,_; only. Assume by induction that M, _-‘7
contains T,_; at most once. If M, does not contain T,_, at all, then §

M = M1M2T3M3,= (q— 1M M, T M; + gM M,M;,

reducing the number of occurences of T, in each new monomial. If M, §
contains T,_, exactly once, we can write M, = M'T,_;M", with M’, M" §
monomials in T, .., T,_, and then,

M=MMT,T,_,T,M"M,,

using the fact that T,,.., T,_, commute with T,. But now, T,T, T,
= Tn—lTnTn—l YieldS

M=MMT, ,T,T,..M"M,,

reducing again the number of occurences of T,.
Hence, every element of H,,; is a sum a + X;b;T,c; with a, b;, ¢; coming }
from H, and it is now clear that ¢ is surjective. ;

CLAaM 3. Monomials in normal form generate H,,, over K.

We have actually proved a little more than was stated in Claim 2.
 Consider the following lists of monomials: 3

Sl - {1, Tl} N
Sz == {1, TZD Tle} 5
Ss = {L T3a T3T2: T3T2T1} 5

Si = {1, Ti? TiTi—15 ceey TiTi—l . Tl} )

Sn == {1, Tn, TnTn—l 9 seey TnTn—l vor Tl} .

Note the property that V; e S; implies T;,,V;€S;+;.
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| Consider the set of monomials M = U;.U,.... U, for all possible
" choices of U;eS;,i = 1,..,n. We shall say that these monomials are in

d rnormal form. There are (n+1)! of them.

3 } We claim that these monomials M generate H,.; as a K-space. Con-

I sequently, dimg H,,; < (n+1)! and also dimg{H, ® H, ® H,} < (n+1)!,

where the tensor product is over H,_; as above.

Proof. We may assume by induction that the claim holds for H,.
! As H,,, is generated over K by monomials M, and M = M,T M,
where My, M,, M, are monomials in Ty, .., T,—1, and as the induction
hypothesis makes the case of M, clear, we concentrate on M=M,T,M,.
: By induction, M, is a K-linear combination of monomials of the form
\ Vi Vyou Vo1, with VeS8, fori =1,.., n—1. We have

MlTnV1V2 e Vn—~1 — MllTnVn__l = MllUn,

with U, = T,V,_; €S,. By induction again, M is a K-linear combination
of monomials of the form U,.U,...U,_; with U;eS;. Thus M is a
K-linear combination of monomials U,.U,...U, as desired and
dimg H,+; < (n+1)!.

This shows also that H, ® _ H, is spanned over K by the subspaces
H,® U,_, with U,_, € S,_;. Therefore, its K-dimension is at most n!.n,
5o that the proof of claim 3 is complete.

B Remark. Let S,,, be the symmetric group on {1, ..,n+ 1}, and denote
| by s; the transposition (i, i+ 1). The same argument as above shows that any
! 1cS,., can be written as a product w; . w, ... . w,, Where

Wi € {1, 8;, $iSi— 1 s SiSi—q e S1} -

We shall use this remark presently in the proof of the following claim 4.

Exercise. Deduce from the remark that &,,,; has a presentation on
generators s, , ..., s, with the relations

s;5; = s;5, whenever |i—j|>2 with ij=1.,n,
SiSi+1Si = Si+15:iSi+1 for i = 1, aony n—1 5
s? =1 for i=1.,n.

CLAM 4. The monomials in normal form M = U,.U,...U,, with
U;eS; for i =1,..,n are K-linearly independent. Also, the map © is an
isomorphism.
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Proof. Denote by I: G, ; — N the word length in S, ,, relative to the
generators {8, S, , . S,}. For i € {1, .., n}, define L; € End(KS, ) by

R if  I(s;m) > I(m),
Lim) = {qs,—n +(g=Drn if Usm) < Um),

foreveryme S, .
The crucial fact is the following

ASSERTION. There is an algebramap L: H,,; - End((KS, ) such that
LT,)=1L; for i=1,.,n '

To prove the assertion, we have to check that the endomorphisms
L, € End(KS,, ) satisfy the defining relations of the Hecke algebra H,, ;.
For this, see the following three claims.

Assuming the assertion, consider a monomial in normal form
M = U,.U,...U,as above. Then, (M) maps 1 € K&, . {towy . Wy...W,,
where w; = s;8;_1 .. Si—; if Uy = T;T;—¢ ... Ti—j. The remark after claim 3
now shows that any of the (n+1)! elements of &, is of the form
Wy . W, ... . W,, SO that these elements are K-linearly independent in K&, ;.
But, as the map from H,,; to KS, which sends x to L(x) (1) is K-linear,
this implies that the elements M = U, . U, ... U, in normal form must also
be linearly independent. Hence, dimg H,,; = (n+1)!.

Now, a dimension count shows that the surjective map ¢ is an
isomorphism.

It remains to prove the above assertion: The L;s satisfy the defining
relations for H, . ;.

Cram 5. L? = (q—1)L;+ q for i=1,.,n
Proof. Letme S, . If l(s;m) > i), then
L¥r) = Lsm) = gsim + (g—Dsim

= (g— s + qn = (@—DLi+q) (M) .
If on the other hand, I(s;m) < I(m), set ' = s;u and observe that
I(s;x') > U='). Thus,
Lm) = L{gsm+(g—1)m) = L{gn'+(g—Dr)
= gsw' + (@—1)L{n) = (@—DL;+q) (m) .

The neXt claim will be used in proving the last two types of relations §
for the endomorphisms L;.
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CLAM 6. For j = 1,..,n define RjeEndK(KG,,H) by

Rim) = TS if  Uns;) > Un),
fm) = {qnsj + =D if lrs;) < Um).

Then, LiR; = R,L; forall ije {1, .., n}.

Proof. Choose i,je{l,..,n; and ne®,,,. The proof that L;R{m)
= R;L{(m) is by direct verification from the definitions of the operators
L;, R; and is divided into six cases.

| (©.1) (sms;) = lm) + 2,
| (6.2) I(s;ms;) = Um) — 2,
| (6.3)6.6) (sms;) = lm)  and

I(s;m) = lm) + &, where &= +1
I(rs;) = (m) + €, where ¢ = *1.

The first two cases are straightforward calculations.

Among the last four cases, two are also trivial, namely those with
¢ # ¢. There remain the two cases with ¢ = ¢ = £1. Then, the exchange
lemma applied to the symmetric group viewed as a Coxeter group (on the
| generators s, .., s,) implies that in these cases we have st = ms;. (If
I c=¢ = +1, this equality is given as property C in Bourbaki, Groupes et
Algébres de Lie, Chap. IV, n° 1.7. If e = ¢’ = —1, the same property yields
s{ms;) = (ms;)s;.) This is just what is needed to complete the verification of

Cramv 7. LL; = L;,L; whenever |i— jl =2,
LiLiy Li = LivyLilisy

B Proof. Let me@,,,. Write T = s;, . Sy, ... . 5;, in reduced form, i.e. with
§ r = l(n). We thus have © = R;R;__, .. R; (1).
| Setting R = R; .. R;,, we have
= R(s;s;) = R(s;s;) since |i—j| > 2, and thus
Since this holds for every m € S, , one has L;L; = L;L;.
| A similar calculation, based on the same principle, proves that L;L;,L;
= Li'l' lLiLi+1 fOI' i = 1, ooy n'—]..
This completes the proof of Proposition 4.1.
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