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of K. Hence, for a knot, a link with a single component, the exponent of m
in Pg(l, m) is even and therefore Ay(r) = Pyfi, i(t}/?—¢~ /) is indeed a Laurent
polynomial in ¢. :

To obtain the one-variable Jones polynomial we use the substitution
| = it,m = i(t¥?—¢~1/2), Explicitly,

Vilt) = Pylit, ilt** —t~112))

Then we have

PROPERTY 7.6. V(t) satisfies the skein invariance
tV(Ky) — t™'W(K_) + (12—t Y)V(K,) = 0,

which (together with V(QO)=1) characterizes Jones one-variable polynomial,
with the sign conventions used in reference [Jo,].

Whereas Py(l, m) determines Ag(f) and V(t), it is known that there are
no other relations between these polynomials. More precisely :

(1) The Alexander polynomial Ag(f) does not determine Jones polynomial
Vi(t) because the trivial knot O and Conway’s eleven crossing knot

(2) Vk(?) does not determine A(z): The knots 4, and 11,4, have the
same V() but different A(¢).

(3) V() and A(t) together do not determine Pg(l, m): The knot 11 388
and its mirror image have the same V() and A(f) but different P(l, m).

For more details on these questions, see [L.-M.].

We now turn to L. Kauffman’s definition of the one-variable Jones
polynomial V(t) directly from the link diagram. .

§ 8. L. KAUFFMAN’S APPROACH TO V. JONES’ ONE-VARIABLE POLYNOMIAL

The importance of Kauffman’s approach [Ka,] is that it gives a new way
to define and compute Jones polynomial V(). It is by using this definition
that Kauffman and Murasugi prove their theorems about alternating links
(see § 10 and 11).

Let L be an unoriented link diagram. Look at a double point; with no
string orientation, they all look the same, up to a local homeomorphism :
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Locally, the plane R? is divided into four regions.

Look at the quarter turn the “over” line must make, in the positive
§i sense, in order to coincide with the “under” line. Call “A” the two regions
% which are swept by the over line during the trip. Call “B” the other two.

A

{ Definition. A marker for a double point is a choice of “4” or “B”
I for this double point. It is symbolised like that:

—®

Marker 4 Marker B
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Now, if a marker is chosen, one can split the link diagram by connecting
the two opposite regions whose name has been elected. Here are the pictures.

splitting if marker splitting if marker
A is chosen B is chosen

Definition. A state S for L is a choice of a marker at every double
point of L.

Suppose now that a state S for L is given. Make the correct splitting
at every double point of L. The underlying knot projection I is transformed
into a bunch I'y of disjoint simple closed curves in S%. Let | S| be the
number of curves in I'y.

Write a(S) for the number of markers A in the state S and write
b(S) for the number of B’s.

If ¢(L) denotes the number of crossings (double points) of L, one clearly
has 24D states.

L being given, Kauffman defines a polynomial <L> € Z[ A, B, d] in the
following way : ’

<L> =Y 4“5 B¥® gisi-1
S

the summation being taken over the 2°® states.

Notations. Write “(O” for an unoriented, connected, simple closed curve in
R? and write OII L for a disjoint union of such a diagram and an
unoriented link diagram L.

Property 1. <(O> = 1.
Property 2. <(OIIL> = d<L> if L is non empty.
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Property 3. Let L be an unoriented link diagram. Select a crossing X
and write L, for the diagram obtained from L by connecting the two
regions A at x, and write Lp for the diagram obtained by connecting
the two B’s. Then:

<L> = A<L,> + B<Lg>.

! PROPOSITION 8.1. < > is the unique function from the set of unoriented
 link diagrams to Z[A, B, d] which satisfies properties 1, 2 and 3.

The proof is straightforward.

| PROPOSITION 8.2. If one sets B = A" and d = —(A%+A7?%), one
* gets a function into Z[A*'] which is invariant under Reidemeister moves (ii)
- and (iii).

Notations. Following Kauffman, we shall still write < > for the function
into Z[A*']. From now on, only this function will be used.

We now recall briefly Kauffman’s proof of proposition 8.2.

First of all, we shall use Kauffman’s schematic way of writing property 3:

<XAX> = A<O(> + B<X>
Invariance under move (ii):

<Y >=A<F >+ B<A>

= A[B<ZT > + A<X>]
+B[B<XX> + A<)(>]
(ABd + A* +B*) <>+ AB <) (>

= <)(>,

" since we have set B = A" 'andd = —(42+47?).
Invariance under move (iii):

<N>=B<VWE(> + A<DN>

=B<oN> +A<IDN\=>
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by invariance under move (ii)

= <’_=.\'-> R
Q.E.D.

This seems to be as far as one can get without orienting link diagrams,
because < > is not invariant under Reidemeister move (i).
To remedy this state of affairs, Kauffman proceeds like this:

Let L be an oriented link diagram.

Recall now that, up to a rotation in R?, there are two types of double
points:

A X

Sign +1 Sign —1

Definition. The writhe number w(L) is the sum of the signs of the
double points of L.

This number is also called twist number. It was known to Tait and
much used by Little. See § 9 of these notes. )

Kauffman’s polynomial f;(4) € Z[A*'] is then defined in the following
way:

fi(4) = (4~ W<L>.
PROPOSITION 8.3. The polynomial f is invariant under Reidemeister
moves (i), (ii) and (iii).

Proof of proposition 8.3. The writhe number is unchanged by the moves (ii) |
and (iii). Hence proposition (8.2) implies the invariance of f under the
moves (ii) and (ii1). -
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We now prove the invariance under move ().
Let I be a link diagram with a portion looking like this:

o

/

and let L be the link diagram obtained from L by removing the loop.
It is immediate that

£A=> and f,B=>O

If we apply property 3 for < > we get
<> = A<L> + A" '<LUIO>.
By property 2
<[> = A<L> + A Y(—A4*—A"?%) <L>.

So <L> = (A—A"Y4*+47 %) <L> = (—4)7° <L>.

Now, for any orientation of the string, the sign of the double point
is — 1.

Hence w(L) = w(L) — 1.

Going back to the definition,

fi = (_A)—sw(i) <[> = (_A)—3W(L)+3 <I>
— (_A)—3w(L)+3 (_A)—-3 <L>
= (—A)" >V <L> = f;.

The proof for the other loop is similar. Q.E.D.

From proposition 8.3 we deduce that Kauffman’s polynomial induces a
map f: &% — Z[A*1].

; THEOREM 84. Themap f: % — Z[A*'] satisfies:
L. fO) =1

] 2. If L,,L_ and L, are skein related (see §3), then:
Atfy, — AT = (AT - A0)f,.
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From the universality of Jones polynomial, we obtain:

COROLLARY 8.5. Let K be an oriented link in R® and let L be
an oriented diagram of K. Then:

VK(t) = fL(t1/4)°

Recall that we use Jones definition in the Bulletin AMS [Jo;] for V.

If we were to use Jones definition in the Notices AMS [Jo,], we would
set A = t~ 14,

Proof of theorem 8.4. The pfoof of 1. is straightforward from the definition.
For 2., using Kauffman’s notations one has:

< N>=A<=>+A<)(>

and

<U>S=A<KX>+A<N>
Hence:

A<N>-A<¥> = (A-AH<=>

If we orient the strings and put the writhe number in the picture, we get
the formula 2. Q.E.D.

Using L. Kauffman’s definition of Jones polynomial, the following
properties are easily proved (enjoyable exercise left to the reader):

L

I. If K, and K, are two oriented links in S° let K,II K, denote their
distant union (one in each hemisphere). Then:

Vi, = H Vi, " Vi,

where p = —(tV2+¢7 13

II. Let K, # K, denote any connected sum of K; and K, as in §7
prop. 4. Then:

VK1 # Ky — VK1 ) VK2°
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IIL. Let K* denote the mirror image of K. Then:

Vix(t) = Vilt™) -
The first three formulas are rather straightforward from the definitions.
IV. (Jones reversing result). Let K be an oriented link in S* and let y
be a component of K. Let A be the linking coefficient of y with what is
left of K when we remove y. (We suppose that this is not empty ) Let K

be the oriented link obtained from K by changing the orientation of v,
while keeping the others fixed. Then:

Vi) = V(1) .

Proof. Of course, we have <K> = < K>, because, for the polynomial
< >, orientations do not matter.
Now: w(K) = w(y) + 2A.
So: w(K) = w(y) — 2.
Hence: w(K) = w(K) — 4\,
We substitute and get:

fo(d) = (—A) B <R> = (—A4)~ O <K>
= (_A)lzl(_A)—3w(K) <K> = (_A)12XfK(A) — AlZlfK(A) )
As one substitutes /4 for A to get Jones 1-variable polynomial, the

result follows.

To finish this paragraph, we illustrate quickly Kauffman’s definition by
computing Jones one variable polynomial for the right-handed trefoil T, .
(Compare § 3.)

There are 8 states associated to the standard knot diagram. One readily
sees that

<T,> = A% + 342Bd° + 34AB%*d + B%d*.
Substituting d = —(4%2+A4~ %) and B = A~! one gets
<T,>=—A>— A3+ 47"
As w(T ) = 3, one gets
fr ) = (—A)°<T,>=A"*"+4"12—-4A"1°.
Substituting t = A4'* one finally obtains

Ve, @) =t 1+t —t7* = t7H—=1+t+1%).




306 P. DE LA HARPE, M. KERVAIRE ET C. WEBER

Now, if one uses our computation in § 3

P(T,) = —2a_ai' —a*a3;? + a;?a?

-1

and substitutesa, = La_ = 1", a, = m one gets

Pr.(,m) = (=207 2—1"*m® + 1"2m?.

The last substitution [ = it; m = i(t'/2—t~1/2) gives (with relief!) the
" same result for Jones one variable polynomial. (Bulletin AMS definition.)

§9. TAIT CONJECTURES

Tait was primarily interested in the classification of knots (ie. one
component links). He organized the job in two steps.

Step 1. Classify generic immersions of the circle in S? (not R?!) modulo
homeomorphisms (possibly orientation reversing) of S2. This was mostly done
by the Rev. T. P. Kirkman (around 1880).

In this process, one has to remember that one is looking at knots in R3
and that one is trying to list knots according to their “knottiness”, i.e.
their minimal crossing number. So, Tait first reduced the number of double
points of a generic immersion by making one “local 180" rotation”.

Examples.
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