§1. Structure locale d'une singularité conique

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 32 (1986)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: **05.06.2024**

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

LES SURFACES EUCLIDIENNES À SINGULARITÉS CONIQUES

par Marc Troyanov

Introduction

Une surface euclidienne est une surface possédant localement la structure du plan euclidien; on peut, de manière équivalente, la définir à l'aide d'une métrique riemannienne plate (c'est-à-dire à courbure nulle).

Une surface euclidienne à singularités coniques (on abrégera s.e.s.c.) est une surface possédant localement la géométrie d'un cône standard; on peut également la définir à l'aide d'une métrique riemannienne plate avec des singularités spécifiques.

Un cône standard possède un unique invariant: son ouverture (qui est un nombre réel positif). La s.e.s.c. possède donc un invariant pour chacune de ses singularités.

En outre, une surface euclidienne (ou riemannienne) avec singularités coniques détermine une unique structure conforme.

Le but de cet article est de montrer que la donnée de ces invariants caractérise complètement une s.e.s.c. compacte et orientable, et d'obtenir ainsi une classification de ces surfaces (Théorème du § 5).

L'exposé présenté est élémentaire et ne nécessite, pour sa compréhension, aucune connaissance autre que les définitions de surface de Riemann et de métrique riemannienne (à l'exception d'un résultat technique donné en appendice).

§ 1. STRUCTURE LOCALE D'UNE SINGULARITÉ CONIQUE

Définition. $V_{\theta} := \{(r;t): r \geqslant 0; t \in \mathbb{R}/\theta \mathbb{Z}\}/(0;t) \sim (0;t')$ muni de la métrique

$$ds^2 = dr^2 + r^2 dt^2$$

s'appelle le cône standard d'angle total θ . On utilise parfois les nombres $k=2\pi-\theta$ et $\beta=(\theta/2\pi)-1$; k s'appelle la courbure concentrée de V_{θ} , β le poids ou le résidu. Les nombres θ , k et β sont des mesures de l'ouverture du cône V_{θ} .

Ces appellations peuvent être justifiées ainsi: prenons le cas où $\theta < 2\pi$ et plongeons le cône V_{θ} dans l'espace euclidien \mathbf{R}^3 (fig. 1). Si on considère une sphère unité tangente intérieurement à V_{θ} on remarque que l'image sphérique de toute approximation (lisse et convexe) de V_{θ} est une calotte sphérique d'aire $2\pi - \theta$ d'où le nom de « courbure concentrée » pour ce nombre.

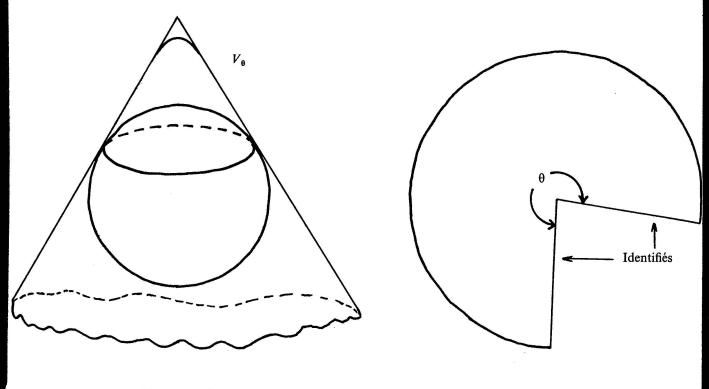


Figure 1

FIGURE 2

Si un cône est fabriqué à partir d'un secteur d'angle θ en recollant les bords par une isométrie, l'angle total de ce cône est précisément θ (remarquons que θ peut être supérieur à 2π). θ est en fait la longueur du cercle de rayon 1 centré au sommet du cône (fig. 2).

Le nombre β est introduit pour des raisons plus techniques venant de la structure conforme:

Proposition 1. C, muni de la métrique $ds^2 = |z|^{2\beta} |dz|^2$, est isométrique à V_{θ} .

Preuve. Si z = x + iy, l'isométrie est donnée par

$$\begin{cases} x = ar^{\frac{2\pi}{\theta}} \cos\left(\frac{2\pi}{\theta}t\right) \\ y = ar^{\frac{2\pi}{\theta}} \sin\left(\frac{2\pi}{\theta}t\right) \end{cases}$$

avec
$$a = \left(\frac{\theta}{2\pi}\right)^{\frac{2\pi}{\theta}}$$
.

Définition. On dit qu'une fonction

$$h: U \to \mathbf{R}$$

(U ouvert de \mathbb{C}) est harmonique avec singularité logarithmique de résidu (ou poids) β en $p \in U$ si la fonction

$$z \mapsto h(z) - \beta \log |z-p|$$

est harmonique.

On remarque que cette notion est indépendante de la coordonnée z choisie.

PROPOSITION 2. Si U est un ouvert de C, et si $h: U \to C$ est harmonique avec singularité logarithmique de poids $\beta > -1$ en $p \in U$ et si on munit U de la métrique

$$ds^2 = e^{2h} |dz|^2$$

alors il existe un voisinage de p dans U isométrique à un voisinage du sommet du cône V_{θ} (pour $\theta = 2\pi(\beta+1)$).

Définition. On dira dans ce cas que p est une singularité conique d'angle θ pour la métrique ds^2 .

Preuve. Supposons pour simplifier que p=0; alors il existe une fonction g(z) holomorphe dans un voisinage de 0 et telle que

$$\operatorname{Re} g(z) = h(z) - \beta \log |z|,$$

car cette fonction est harmonique par hypothèse. On a

$$e^{g(z)} = a_0 + a_1 z + a_2 z^2 + \dots \quad (a_0 \neq 0).$$

Posons

$$b_k = \frac{\beta + 1}{\beta + k + 1} a_k;$$

alors la série $\sum_k b_k z^k$ converge dans un voisinage de 0 vers une fonction analytique f telle que $f(0) \neq 0$. Considérons la fonction

$$w = zf(z)^{1/\beta+1}.$$

(On a choisi une détermination du log au voisinage de f(0)). On a $\frac{1}{\beta+1}w^{\beta+1} = \int_0^z t^\beta e^{g(t)}dt$ pour toute détermination. Donc $w^\beta dw = z^\beta e^{g(z)}dz$ $= e^{g(z)+\beta\log z}dz$ et

$$|w|^{\beta} |dw| = e^{\operatorname{Re} (g(z) + \beta \log (z))} |dz| = e^{h(z)} |dz|.$$

Donc $ds^2 = |w|^{2\beta} |dw|^2$ ce qui prouve la proposition 2 grâce à la proposition 1.

Remarques. 1) On n'a nulle part utilisé que $\beta \neq 0$, donc on a montré que si h est harmonique, alors

$$ds^2 = e^{2h} | dz |$$

est une métrique plate.

2) La démonstration montre également que si $\mu(z)$ est une fonction holomorphe possédant un zéro d'ordre m à l'origine alors il existe une coordonnée w telle que

$$w^m dw^q = \mu(z) dz^q$$

(où q=1, 2, 3, ...). Ce fait est important en théorie des formes modulaires et des différentielles quadratiques. On appelle w la « coordonnée normale » au voisinage du zéro.

Définition. Deux métriques riemanniennes ds_0 , ds_1 sur une variété M sont dites conformes s'il existe une fonction $h: M \to \mathbb{R}$ telle que.

$$ds_1^2 = e^{2h} ds_0^2$$

Une classe d'équivalence de métriques conformes sur M s'appelle une structure conforme. Si M est une surface orientable, alors les structures conformes s'identifient avec les structures complexes (cf. [2], [3]). Une surface orientable munie d'une structure conforme (ou complexe) s'appelle une surface de Riemann.

PROPOSITION 3. Soit S une surface munie de deux métriques conformes ds_0 , ds_1 (alors $ds_1 = e^h ds_0$). Supposons que ds_0 soit plate.

Alors: ds_1 est plate si et seulement si h est harmonique.

De plus: $p \in S$ est un point conique d'angle θ_i pour ds_i^2 (i=1,2) si et seulement si h a en p une singularité logarithmique de poids $\beta_1 - \beta_0$ $\left(où \beta_i = \frac{\theta_i}{2\pi} - 1 \right)$.

 $(\theta_i \text{ n'est pas nécessairement différent de } 2\pi).$

Preuve. Soit $S_0 = S - \{\text{singularit\'es de } ds_0 \text{ ou } ds_1\}$. Soit $p \in S_0$; si h est harmonique et ds_0 plate la proposition 2 implique que ds_1 est également plate en p (cf. remarque 1). Inversément, si ds_0 et ds_1 sont toutes deux plates, alors il existe deux systèmes de coordonnées, (x; y) et (u; v) au voisinage de p tels que:

$$ds_0^2 = dx^2 + dy^2$$
 et $ds_1^2 = du^2 + dv^2$.

Notons z = x + iy et w = u + iv et soit w = g(z) l'application identité dans ces coordonnées. Alors g est holomorphe et on a

$$ds_1^2 = |dw|^2 = |g'(z)|^2 |dz|^2;$$

or

$$ds_1^2 = e^{2h} ds_0^2 = e^{2h} |dz|^2.$$

Donc $h(z) = \log |g'(z)|$ est bien harmonique. Si $p \notin S_0$, p est un point conique d'angle θ_i pour $ds_i (i=1, 2)$. Alors il existe des coordonnées z et w au voisinage de p telles que z = w = 0 en p et

$$ds_0^2 = |z|^{2\beta_0} |dz|^2, ds_1^2 = |w|^{2\beta_1} |dw|^2$$

(cf. proposition 1).

Soit w = g(z) l'identité; g est holomorphe en $z \neq 0$ mais comme g est un difféomorphisme g est encore holomorphe à l'origine. De plus g'(z) ne s'annule pas. g(0) = 0 est donc un zéro simple c'est-à-dire il existe g_1 tel que $g(z) = zg_1(z)$ et g_1 ne s'annule pas. Ainsi

$$ds_1^2 = |w|^{2\beta_1} |dw|^2 = |zg_1(z)|^{2\beta_1} |g'(z)|^2 |dz|^2$$

mais

$$ds_1^2 = e^{2h} ds_0^2 = e^{2h} |z|^{2\beta_0} |dz|^2.$$

Donc $h(z) = (\beta_1 - \beta_0) \log |z| + \beta_1 \log |g_1(z)| + \log |g'(z)|$ est harmonique avec singularité logarithmique de poids $(\beta_1 - \beta_0)$ en z = 0 (car g' et g_1 ne s'annulent pas).