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ProposiTiION 3.1.  The Hopf 3-spheres on  S*"~' are parallel to one
another.

The proof is similar to that of Proposition 1.1 for Hopf circles; it
uses the fact that scalar multiplication by i, j and k are isometries of H".
Alternatively, it will follow, as in Remark 1 above, from Proposition 4.2 a.

QED

The Riemannian metric on HP"™! which makes the Hopf projection
§**~1 — HP" ! into a Riemannian submersion is known as the canonical
metric on HP""*. The canonical metric on HP' makes it into a round

4-sphere of radius 1/2. This follows by the same argument given in Pro-
position 1.2 for the case H: S ¢, S3 - CPL.

4. SYMMETRIES OF THE HOPF FIBRATIONS WITH FIBRE S3

We now invesfigate the symmetries of the Hopf fibration
H:S8%c §4~1 , gpr—1t
The symplectic group
Sp(n) = Gl(n, H) n O(4n)

consists of quaternionically linear maps which are also rigid. Since these

maps take quaternionic lines to quaternionic lines, they must be symmetries
of the above Hopf fibration.

There are other symmetries. For each unit quaternion v, consider the
action of right scalar multiplication by v on H",

Ry(uys . tty) = (uy 0, ..., u, v).

This map is certainly not H-linear, since

R, [y, s W] = (uy wo, .., u, wv),

while [Ry(uys o h,)IW = (uy 0w, ..., u, vw).

Nevertheless, R, takes each quaternionic line in H" to itself. Thus the group
S* of unit quaternions, acting on H" from the right, must also be counted
among the symmetries of our Hopf fibration. |
Since the symplectic group Sp(n) acts on S**~! from the left, while
the group S® of unit quaternions acts from the right, these two actions
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commute_. The actions also overlap, because they both contain multiplication
by — 1. Hence they combine to give an action of the group

Sp(n) x S3
2

on S4"~ 1 where this group is obtained from Sp(n) x S by dividing out by
the two-clement subgroup consisting of the identity and the antipodal map.
The following lemma asserts that there are no further symmetries.

PROPOSITION 4.1. The group G of all symmetries of the Hopf fibration
H is
_ Sp(n) x S3

G
2

Let g be a symmetry of the Hopf fibration, ie., a rigid map of H"
taking quaternionic lines to quaternionic lines. Composing g with an appro-
priate element of Sp(n), we can arrange that the new g be invariant on
each quaternionic coordinate line 0 x ... X H x .. x 0.

We claim this new g is orientation preserving on H X 0 x..x0.
Suppose not. Then composing it with appropriate elements of Sp(n) and S3,
we can further arrange that g(u,..) = (%, ..). Here we use the fact that
left and right multiplication by unit quaternions generates the group SO(4).
Since g takes quaternionic lines to quaternionic lines, we must have

gu,u,..) = (4, mu .), forsome m# 0.

Then for any s,

glu, su, ) = (& m(su),..) = @Gmas,.).

As u varies, these image points must also fill out a quaternionic line,
hence mu§ = tu. Putting u = 1, we get t = ms. Thus mus =msu.
Cancelling the m, we get 4§ = Su. Since both u and s are arbitrary,
 this is impossible, establishing the claim.

Thus g is orientation preserving on H x 0 x .. x 0, and we compose it
- with appropriate elements of Sp(n) and S so as to make it the identity

7,  there. Then we again use the fact that g takes quaternionic lines to qua-
& tcrnionic lines to conclude that

glu, u, ..., u) = (U, my U, ..., M, U).
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Hence

g(ul s Up s ey un) = (ul s My Uy, ooy M, un) s

so the current version of g must lie in Sp(n). QED

Remark. Note that all the symmetries are orientation preserving, since the .}
group G is connected. ;

Let H: S* ¢, §*"~! > HP"~! denote our current Hopf fibration, and let
us orient the fibres in a consistent fashion. The next proposition shows
that this fibration is highly symmetric, yet slightly less so than the Hopf
fibrations by circles.

PROPOSITION 4.2. Let H:S8° ¢ S* ' - HP*' be a Hopf fibration.
Then

a) The only symmetries of H inducing the identity on the base space
are the right multiplications by unit quaternions. This is Jjust a 3-parameter
subgroup of the 6-parameter group O(4) of all rigid motions of a fibre.

b) If P and Q are any two fibres, then any preassigned orientation
preserving rigid motion of P onto Q can be extended to a symmetry
of H. But no orientation reversing one can.

¢) The group of symmetries acts tramsitively on S*"~ !, and in particular
acts transitively on fibres.

It follows easily from the non-commutativity of the quaternions that
the only transformations in Sp(n) which take each quaternionic line to
itself are +Id. Then a) follows immediately from the description of the
symmetry group given in Proposition 4.1.

Even the subgroup Sp(n) of G acts transitively on S*"~ 1, and c) follows.

To prove b), we can now assume that P and Q both coincide with
the unit 3-sphere on H x 0 x .. x 0. Then left and right multiplication
by unit quaternions takes this fibre to itself, and generates SO(4). No
orientation reversing transformation of this fibre can be achieved, since
the group of symmetries is connected. This proves b). QED

Remarks. 1) Note that the existence of symmetries of H taking each fibre
to itself and acting transitively on a given fibre shows that these fibres
must be parallel.

2) Also note that a symmetry of H: S>3 ¢ $* ! - HP" ! induces an
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isometry of the base space HP" ! in its canonical metric. It is easy to
check that when n = 2, every orientation preserving isometry of the base
. HP! = S4(1/2) can be produced this way, while no orientation reversing
§  onc can (since the group is connected). We remark without proof that all
8 isometries of HP"™ 1, n > 2, can be produced this way, and that they are

k- all orientation preserving.

5. NORMED DIVISION ALGEBRAS AND THE CAYLEY NUMBERS

 In order to describe the Hopf fibration H: S7 ¢, S5 — S® in the next
~ section, we first review here some facts about normed division algebras
" and the arithmetic of Cayley numbers. More can be found in two excellent
references, [Cu] and [H-L, pp. 140-145].
A normed division algebra B is a finite dimensional algebra over the reals R,
with multiplicative unit 1, and equipped with an inner product < , >
whose associated norm-| | satisfies

|xy| =|x| |yl forall x,yeB.

By Hurwitz® Theorem ([Hu 1], 1898), a proof of which we will outline
here, every normed division algebra is isomorphic to either the reals R,
the complex numbers C, the quaternions H or the Cayley numbers Ca.
Actually, what Hurwitz proved is that normed division algebras can only

" occur in dimensions 1, 2, 4 and 8. He stated the corresponding uniqueness
~ result without proof. In [Hu 2], published in 1923 after his death, Hurwitz
credits E. Robert [Ro] with writing out the details of the uniqueness
argument in a 1912 Zurich thesis.

Now let B denote a given normed division algebra. Let Re B denote
4 the one-dimensional linear subspace spanned by the identity 1, and Im B the
! orthogonal complement of Re B. Then each x € B has a unique orthogonal
2 decomposition,
x=x; +x, x;eReB and x'elmB,
‘ into its real and imaginary parts. Conjugation in B is defined by:

)5=x1——x.

Here are some basic facts about arithmetic in any normed division
algebra B: '
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