Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 32 (1986)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: CLASSIFICATION DES REPRÉSENTATIONS DE LA DOUBLE

FLÈCHE

Autor: Burgermeister, Pierre-François

Kapitel: 3. La classification

DOI: https://doi.org/10.5169/seals-55086

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

De même on peut choisir $L_2 = U_2 \oplus U_2'$ telle que $f_2(U_2) \subset T$ et $f_2(U_2) \subset T'$.

On obtient alors la décomposition suivante de A:

$$(S \oplus U_1 \oplus U_2) \oplus (S' \oplus U'_1 \oplus U'_2) \rightrightarrows (T \oplus f_2(U_1) \oplus f_1(U_2))$$
$$\oplus (T' \oplus f_2(U'_1) \oplus f_1(U'_2))$$

LA CLASSIFICATION

3.1. Premier cas: l = 0

Soit A une représentation indécomposable du type (*) avec l = 0. En particulier:

$$\dim E = \dim F = n$$
; $\dim V = \dim W = n-m$; $\dim L_1 = n_1$; $\dim L_2 = n_2$.

L'une au moins des deux applications f_1 ou f_2 est un Proposition. isomorphisme.

Preuve. Par récurrence sur n.

Si n = 1, c'est trivial.

Si n > 1, on envisage deux cas:

- 1) m = 0, et alors f_1 et f_2 sont des isomorphismes.
- 2) m > 0, et on regarde $V \stackrel{\text{res } f_1}{\Rightarrow} W$ qui est indécomposable (par le lemme) et où dim $V = \dim W < n$.

Par hypothèse de récurrence, res (f_1) — ou res (f_2) — est un isomorphisme. Alors $L_1 = 0$. Et puisque $f_1: L_2 \to f_1(L_2)$ est un isomorphisme, $f_1: E$ $=V\oplus L_2\to W\oplus f_1(L_2)=F$ est un isomorphisme. A isomorphisme près, on est alors ramené à classer les représentations $E \rightrightarrows E$ et $E \rightrightarrows E$. Remarquons que si f_1 est inversible, $E \stackrel{f_1}{\rightrightarrows} E$ est isomorphe à $E \stackrel{1}{\underset{f_1^{-1}}{\rightrightarrows}} E$.

Pour les représentations du type $E \rightrightarrows E$, on regarde E comme k[x]-module

où l'action de x est donnée par $x \cdot v = f_2(v)$, $\forall v \in E$. E est un k[x]-module indécomposable (sinon il y aurait une décomposition de E en sous-espaces stables par f_2 ce qui est impossible puisque A est indécomposable). Il est donc de la forme $k[x]/(p^s)$ où $p \in k[x]$ est un polynôme irréductible unitaire. On sait alors que, par le choix d'une base convenable, f_2 peut être mis sous forme normale de Jordan [4]. Plus explicitement, si d est le degré du polynôme p, la matrice de la multiplication par x dans $k[x]/(p^s)$ relativement à la base

$$\{1; x; x^2; ...; x^{d-1}; p(x); x p(x); x^2 p(x); ...; x^{d-1}; p(x); ...; p^{s-1}(x); x p^{s-1}(x); ...; x^{d-1}p^{s-1}(x) \}$$

est la forme normale de Jordan de f_2 , que l'on notera J_{p^s} .

De plus, on a les résultats suivants:

- 1) La représentation $E \rightrightarrows E$ est indécomposable.
- 2) Soient A_1 et A_2 les représentations $E \stackrel{1}{\Rightarrow} E$ et $E \stackrel{1}{\Rightarrow} E$ respectivement.

Alors: $A_1 \cong A_2 \Leftrightarrow p = q \text{ et } s = r$.

Ces deux assertions découlent directement du fait que J_{p^s} est la matrice de la multiplication par x d'un k[x]-module indécomposable et univoquement déterminé par p et s (pour les modules sur un anneau principal, voir [5]).

Remarque. Les représentations du type $E \stackrel{f_1}{\rightrightarrows} E$ pour f_1 non inversible sont de la forme $E \stackrel{J_{x^n}}{\rightrightarrows} E$.

On notera $\overline{A_n^x}$ une telle représentation et A_n^p la représentation $E \rightrightarrows E$, où $n = \dim E = s \deg (p)$.

CONCLUSION

Nous avons obtenu une liste complète des représentations du type $E \stackrel{J_1}{\Rightarrow} E$. Ce sont tous les A_n^p , $n = \dim E$, $p \in k[x]$, un polynôme irréductible, unitaire, dont le degré divise n, auxquels il faut ajouter $\overline{A_n^x}$.

Avant de passer aux cas suivants, il est intéressant de remarquer que toutes les représentations examinées dans ce paragraphe sont auto-duales (isomorphes à leur duale):

Soit
$$E = k[x]/(p^s)$$
 et $J_{p^s}: E \to E$.

Chercher un isomorphisme φ , de E dans son dual, tel que $\varphi J_{p^s} = J_{p^s}^* \varphi$, revient à chercher une forme bilinéaire non dégénérée, $b: E \times E \to k$, telle que:

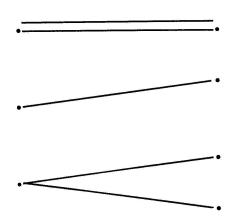
$$b(x \cdot q; q') = b(q; x \cdot q')$$
 pour tous $q \in E$ et $q' \in E$.

Si n est le degré de p^s le produit $q \cdot q'$ s'écrit $a_{n-1}x^{n-1} + ... + a_1x + a_0$ dans E, et la forme qui fait correspondre au couple (q; q') le coefficient $a_{n-1} \in k$ du polynôme produit a les propriétés voulues.

3.2. Deuxième cas: l=1

Pour simplifier l'écriture, on aura recours, dans ce paragraphe, à des graphes de certaines représentations. Chacun des espaces E et F y est désigné par une colonne de points, à gauche pour E, à droite pour F; l'ensemble des points d'une colonne symbolisant une base de l'espace. Les applications linéaires f_1 et f_2 sont représentées par l'ensemble des traits reliant les points de gauche à ceux de droite. Les traits représentant f_1 « montent » ou « sont horizontaux » ceux qui représentent f_2 « sont horizontaux » ou « descendent ».

Exemple.



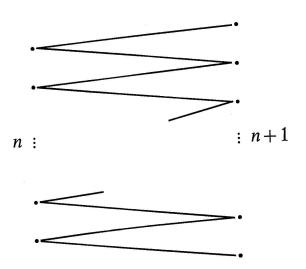
Cette représentation a les caractéristiques suivantes:

$$\dim E = 3$$
, $\dim F = 4$, $\dim \operatorname{Ker} f_1 = 0$, $\dim \operatorname{Ker} f_2 = 1$, $\dim V = \dim W = 1$.

On voit immédiatement qu'elle est somme directe de 3 sous-représentations.

Remarque. En général, une représentation n'admet pas un graphe de ce type, mais les cas particuliers qui vont nous intéresser s'y prêtent très bien.

Notation. On notera B_n la représentation donnée par le graphe:



Remarques.

1) Les matrices de f_1 et f_2 dans les mêmes bases que ci-dessus, sont, respectivement:

$$n+1$$
 $\begin{pmatrix} 1 \\ 0 \dots 0 \end{pmatrix}$ et $\begin{pmatrix} 0 \dots 0 \\ 1 \end{pmatrix}$ $n+1$

2) B_n est indécomposable: pour le voir, il suffit de remarquer que la somme des images par f_1 et f_2 d'un sous-espace de E de dimension $i(1 \le i \le n)$ est toujours un sous-espace de F de dimension $\geqslant i+1$.

Soit A une représentation indécomposable donnée par

$$E = V \oplus L_1 \oplus L_2 \stackrel{f_1}{\underset{f_2}{\Rightarrow}} W \oplus f_2(L_1) \oplus f_1(L_2) = F,$$

avec dim E = n, dim F = n+1, dim V = n-m-2, dim W = n-m-1, dim $L_1 = n_1 + 1$, dim $L_2 = n_2 + 1$.

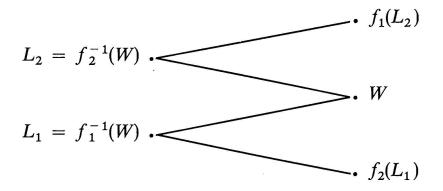
Proposition. $A \cong B_n$.

Preuve. Par récurrence sur n.

n = 1: c'est trivial.

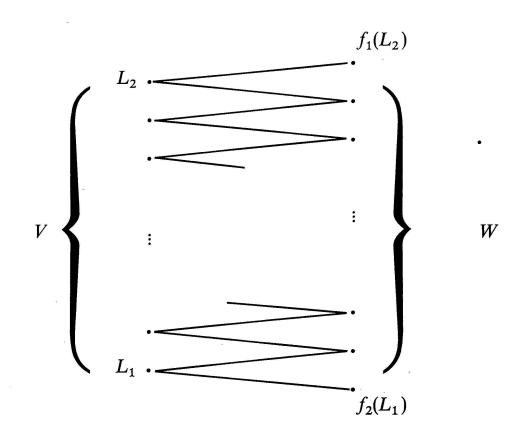
n=2: puisque dim V=n-m-2, on a nécessairement m=0 et V=0. On en déduit encore dim W=1.

Le graphe de cette représentation s'obtient naturellement en partant d'une base de W:



n>2. On regarde $V\overset{\mathrm{res}\,f_1}{\rightrightarrows}W$. Par le lemme du § 2, cette sous-représentation est indécomposable.

Soit $t = \dim V = n - m - 2$, alors $\dim W = t + 1$, et par récurrence, la sous-représentation $V \stackrel{\text{res } f_1}{\rightrightarrows} W$ est isomorphe à B_t . En particulier, $\operatorname{Ker} f_1 = \operatorname{Ker} f_2 = 0$, t = n - 2. Le graphe de A s'obtient alors facilement de celui de B_{n-2} :



3.3. Troisième cas: $l \geqslant 2$

Soit A, la représentation donnée par

$$E = V \oplus L_1 \oplus L_2 \stackrel{f_1}{\underset{f_2}{\Rightarrow}} F = W \oplus f_2(L_1) \oplus f_1(L_2)$$

 $\dim E = n$, $\dim F = n + l$, etc. avec $l \ge 2$.

PROPOSITION. A est décomposable.

Preuve. Par récurrence sur n:

n = 1: c'est trivial.

n > 1: on regarde la sous-représentation $V \stackrel{\text{res } f_1}{\Rightarrow} W$.

$$\dim V = n-m-2l=t, \dim W = t+l.$$

Par récurrence, cette sous-représentation est décomposable. Et alors, par le lemme du § 2, A est décomposable.

8. Conclusion

Notation. On notera C_n la représentation duale de B_n . C_n admet le graphe suivant:

$$n+1$$
: n

On a démontré le

THÉORÈME. Soit $n \in \mathbb{N}$, un entier positif. Les représentations indécomposables, $E \underset{f_2}{\overset{f_1}{\Rightarrow}} F$, où dim E = n, sont les suivantes: