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ON A CONSTRUCTION FOR THE REPRESENTATION
OF A POSITIVE INTEGER AS THE SUM OF FOUR SQUARES

by G. ROUSSEAU

Hermite [4] gave a very simple construction for the representation
of a prime of the form 4k+1 as the sum of two squares, using continued
fractions. This note is concerned with the extension of this construction
to the domain of Gaussian integers.

In 1 we show that, as might be expected (although it does not seem to
have been published previously), there is a similar construction in the domain
of Gaussian integers for the representation of an arbitrary positive integer
as the sum of four squares.

One might also expect some small additional complications in the four
squares case, and indeed what is shown in 1 is that for a given positive
integer m there is a representation of m, 2m or 3m, from which one then
passes to a representation of m. This is of course not difficult, but it is
somewhat inelegant. However, in computations carried out by L. Rousseau
and the author, it emerged that this subsidiary transformation is never
in fact needed. The construction always yields a representation of m directly;
in other words, the Hermite construction applies just as well for the
construction of four squares representations as it does for two squares
representations. This is proved in 2 by a somewhat more elaborate argument,
using an old result of Auric [1] on continued fractions with Gaussian
integer terms.

Some of the other known four squares constructions are discussed briefly
in 3.

1. We consider the extension of Hermite’s construction to the domain of
Gaussian integers. Any positive integer N may be expressed in the form
N = k’m, where m is square-free. In order to construct a representation
for N as the sum of four squares, it is evidently sufficient to construct
one for m. The congruence a* + b*> + 1 = 0 (mod m) is solvable in rational

integers, so, setting oo = a + ib, we have, in the domain Z + Zi of Gaussian
integers,
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(1) o = —1 (mod m).

Performing the Euclidean algorithm in Z + Zi, beginning with v, = a,
Y, = m, we obtain Gaussian integers ¥,, ¥, ., such that

1
Yr = K Vr+1 + Ye+25 N(Yr+2) < EN(’Yr+1) (V:O, la romy n):'

terminating with v,,, = 0. Thus a/m has the continued fraction development
ofm = (Ko Ky Kyo 1, K,) = Ko + Lk + 1K+ +1/K,) ).

If [k, ..., k,] denotes the usual Gaussian bracket, then o, = [k, K4, ..., K,]
and B, = [x,,..k,] are, respectively, the numerator and denomi-
nator of the rth convergent of the continued fraction for o/m. We have
Yy = Yns+1lK,» - K, ], Where v,,; = (a,m) is a unit. Also the following
standard formulas may be established:

(2) Br Ves1 + Brot Vow2 = V13
(3) Brvo — %71 = (=1 vz
From (3) we have af, = (—1)" v,,, (mod m), so that, in view of (1),
N(B.) + N(y,+2) =0 (modm).

Thus, for any r, N(B,) + N(y,.+,) = a? + b? + ¢? + d?, say, is a multiple
of m.
We shall show that there exists r such that

0 < NPB,) + N(v,42) < 4m.
To this end we first show that
N@B,) N(v,+1) <4 N(y;) (r=0,1,..,n).

This is done by induction on r. Thus let w, = B,y,+/y.; it is to be

shown that |w,| < 2. Clearly wy = By = 1. In view of (2) we have

W, = 1 — Br—17r+2/Y1 =1- (’Yr+2/'Yr)wr—1; SinCC, for r > 09 | Yr+2/Yr| < 5;
1 . :

we have |w, | < 1 + Elwr_1 |, soif |w,_;| < 2 then | w,| < 2, as required.

Now, since the N(y,.,,) decrease monotonically from m? to zero, we may
(if m>1) choose r so that N(y,,,) < 2m < N(y,+). Then, on the one hand,
N(vy,,,) < 2m, while, on the other hand, N(B,) < 4m?/N(y,,,) < 2m. Thus
0 < N(B,) + N(v,,,) < 4m, as was to be shown.

2
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Thus m, 2m or 3m is the sum of four squares, from which it easily
follows that m is representable as the sum of four squares (cf. [2]). Indeed,
if 2m = a® + b? + c% + d? then by rearranging the terms if necessary we
may suppose a = b (mod 2), ¢ = d (mod 2), so that

= () (5 (5 (5

where the terms on the right are integers, while if 3m = a® + b* + ¢* + d°
then by changing signs if necessary we may suppose d, b,c,d =0 or 1
(mod 3) and further, by rearranging the terms if necessary, that a = 0 (mod 3),
b = ¢ = d (mod 3), so that

_ (btc+d Z—I- a—b+c 2+ a—c+d 2+ a—d+b\?2
=T 3 3 3 )

where again the terms on the right are integers.

2. We shall establish the following result:

THEOREM. Let m be a square-free positive integer and let oo = —1
(mod m). If o/m has the continued fraction development

a/m = (Kg; Ky>Kay e Ky) s
then for some r < n we have
m:N(Br)+N(Yr+2):af+br2+cf+drza

where

a, + ib, = [k, ., %], ¢, + id, = [K, 42, ...%,] (=0,1,..,n).

Thus a representation of m as the sum of four squares is obtained by
performing the Euclidean algorithm for o/m, calculating f, at each step,
until an r is reached for which N(B,) + N(y,;,) = m.

If all prime divisors of m are of the form 4k+1 then o and the

K,, Y, may be taken as rational integers and so the construction reduces
essentially to that of Hermite [4].

Proof. For any r, N(B,) + N(y,4,) = a? + b2 + c¢2 4+ d? is a multiple
of m. We must show that for some r the multiple of m in question is m
itself. It is clear that N(B,) + N(v,+,) > O, since if N(y,.,) = O thenr = n
and so N(B,) = N(B,) = m? > 0.
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Auric [1] showed that

(4) |Yr+2/%‘l < 1/3 (1”21, ooy n):
and that
(5) | B, Vrs1 | < 3m/2 (r=0,1,.,n).

If| vo v1 | < 3m/2 then it is easy to see that m < 3 and N(y,) + N(y,) = m.
In the contrary case, the |v, v,.,;| decrease monotonically from |7y, vy |
> 3m/2 to zero. Hence we may choose r so that

(6) IYr-i-l ’Yr+2‘i<3m/2<|’\{rPYr+1|'

For each r let N, = N(B,) + N(v,,,); then N, = k,m for some positive
integer k,. By Euler’s identity and (2) we have

Nr—lNr = N(Br—lBr_'Yr-i-l’_YrJrZ) -+ N(Br’Yr+1+Br—l’Yr+2)
= I Br—lBr - Yr+1?r+2 |2 + m2 .
Now

,Br_1Br| _ |Br—1Yr| |Br’Yr+1| < 377’I/2,
) |YrYr+1|

by (5) and (6), and

| Vet 1Vrs2 | < 3m/2,
by (6). If 3m/2 < | v,+,|? then

’ Br_lBrl — ‘ Br-—erl I B;Yr-i—l I ’Yr+1 < 3m/(2\/2),
| Yrs1 | Vr
by (5). If | v,+1 | ? < 3m/2 then
- Y
Vs 1Traz | = 1 orn 12|22 < 3mf(24/2) .
r+1
Also
n - ’Yr
| By iBYrs1Yes2 ] = | B 1o | [ BrYrsr | 2 < 3m2/4,

by (4) and (5).
Hence we have

Nr—lNr < l Br—lBr | 2 + I Yr+1?r+2 12 -+ 2 I Br—-lBr’Yr+l'_Yr+2l + m2
< Im?/8 + Im?/4 + 3m*/2 + m> < 6m* .
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It follows that k,_,k, = 1,2,3,4, or 5. Butif k,_;k, = 4 then 3m> = | B,_,B,

— v ~/

V. 1Y,-- |2, so that 3m? is the sum of two rational integral squares,
which is impossible. Hence k,_ k, is a prime or unity and so one of the
factors is unity, i.e., N(B,_,) + N(v,+;) = m or N(B,) + N(y,+,) = m. This
completes the proof.

The above argument shows that for any o (not necessarily satisfying (1))
there exists r such that

47
N(B,) + N(v,.,) < \/;m = 2+4238..m.

Computation shows that for m < 200 and arbitrary « there exists r such that
N(Br) + N(yr+2) < 2m .

It would be of interest to know if the same is true for all m.

3. Among the other known constructions for the representation of a positive
integer as the sum of four squares is that provided by the reduction theory
of positive definite Hermitian forms ([5]). Equivalent to this is Smith’s
construction [6], based on representing the fraction m/o as a conjugate-
symmetric continued fraction

(7) M/ = (K3 Kis oo Ky Kpyy ooy K15 Ko)
which gives, in view of (2),
m = N([Kg, ., X,1) + N([Kg, ey K- 1]) -

Another construction 1s known from the theory of integral quaternions.
Namely, if (1) holds then the (right) g.c.d. ¢ = (m, a+J) exists and m = N(q)
(here we may interpret “integral” either in the sense of Lipschitz or of
Hurwitz; in either case g may be taken as having rational integral
coefficients). This may be seen from Smith’s construction; thus, with the
notation as in (7), set

G = [Key ooy Ky Ky o Kol + (=177 [k, s K, — 517
then we have go = m, qy =o+],

49 = KGr+1 + G2 (r=0,1,.,n-1),

G = (Kat (= 1" )G v,
from which (m, o0+j) = Gue1 = [Ky, s Kol + (= 1) [Kg, o Ky 11
ie., N(q,+1) = N([xq, - ,]) + N([xo, -, Ky 1]) = m.
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If only the existence of a representation is required, rather than an
explicit construction, then, as is the case in other contexts, the use of
continued fractions may be replaced by the use of Dirichlet’s pigeonhole
principle or results in the geometry of numbers which follow from it
(cf. Brauer and Reynolds [2], Davenport [3]). Indeed the existence of a
solution of af = n (mod m) with 0 < N(§) + N(n) < 4m is a consequence
of Minkowski’s theorem on linear forms, while the existence of a solution

with 0 < N(§) + N(n) < 2m follows from Minkowski’s theorem on convex
bodies.

The author is indebted to L. Rousseau for assistance with computational
work in relation to this paper.
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