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1. AN ISOTOPY CLOSING LEMMA

We will prove the following closing lemma:

MAIN LEMMA 1.1. Let h: M — M be a homeomorphism of the connected
manifold M. If h has a nonwandering point which is not a fixed point,
then there exists an isotopy {h,|te[0, 1]} such that:

(1) ho =h;
(i) h, = h outside a compact subset of M\Fix (h) which does not depend
on t,

(i1) Fix (h,) = Fix (h);
(itv)  hy has a periodic point of period 2 in M\Fix (h,).

We will need several elementary lemmas. The first lemma is easy.

LEMMA 1.2. Let ®4,.., ¢, be homeomorphisms of a space Z. If X
is a subset of Z, we have

O - 01(X) = X U (| supp (9;)).

i=1

LeEmMmaA 1.3. Suppose that h and o4, ..., ©, are homeomorphisms of the
space Y. If we have
Vi = 1, .., k, h(supp @;) N (| supp ¢;) = @
j<i
then Fix (@ ... 0 h) = Fix (h).
Proof. Since h(supp ©;) N supp ©; = (), we have

Fix () 0 (\;_, supp @) = @ .

This implies the inclusion Fix (h) < Fix (@4 ... @ h).

We prove the other inclusion by induction on k.

Suppose k = 1. If ¢ h(x) = x and h(x) # x then certainly h(x) € supp ¢,
and hence also x = @ h(x) € supp ¢, . But this is impossible, since h(supp ¢,)
N supp ¢; = @.
| Suppose the lemma true for k — 1. Let x be such that @, @, ... @;A(x) = x.
1 This is equivalent to @_; .. @h(x) = @, *(x). If x ¢ supp @,, we obtain
. ©u_q .. ¢ h(x) = x. By the induction hypothesis, this gives x e Fix (h). If
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x e supp ¢,, then h(x)e h(supp @), and since h(x) = o1 0t of Hx)
we obtain, by 1.2, that h(x) € | J;<, supp @; which is disjoint from h(supp @x)!
]

The next definition 1s due to Brouwer.

Definition 1.4 ( Translation arc). Let h: Z — Z be a homeomorphism of
the space Z. An injective arc o = Z is called a translation arc (for h)
if o joins some point x to its image h(x) and h(x) 0o = @, where o
is o minus its extremities. Remark that o does not contain any of the fixed
points of h. Moreover, we have h(x)e o n h(o) and if o h(a) # {h(x)}
then x = h?(x).

LEmMMA 1.5 (Brouwer). Let h:M — M be a homeomorphism of the
manifold M. If y and h(y) are contained in the same component of
M\Fix (h), then there exists a translation arc o with yea.

Proof (Well known). We can assume M connected and Fix (h) = Q.
Let B be a subset of M homeomorphic to the euclidean closed ball of
the same dimension as M, containing y in its interior and with h(B)
N B = . Since M is connected, there exists an isotopy {0,|te [0, 1]}
such that 8, = Id, 0,(y) = y and 0,(h(y)) € B. If we put B, = 0, *(B), there
is a first ¢t such that B, » h(B,) # (O, we call s this first t. We have:

(i) y is in the interior of By;
(1)) the interiors of B, and h(B,) are disjoint;

(1) By intersects h(B,) in a point which on the boundary of each one of
them. If we call h(x) this point, then x is also in the boundary of B,.

It follows that we can find an arc o < B, between x and h(x), with & contained
in the interior of B;. By (ii) above, h(o) n & = . ]

PROPOSITION 1.6. Let o be a translation arc for the homeomorphism h
of the connected manifold M. If for some n > 2 we have h' o) N o # Q,
then there exists an isotopy {h,|t [0, 1]} such that:

(i) ho == h,.
(i) h, = h outside a compact subset of M\Fix (h) which does not depend
on t;

(1) Fix (h,) = Fix (h);
(tv)  hy has a periodic point of period 2 in M\Fix (h,).
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Proof. We call x, h(x) the extremities of a. By 1.4, we are reduced to

the case o h(a) = {h(x)}. Call n + 1 the first integer > 2 such that
i e) na # Q. Let zeh’“rl () N o. By our choice of n + 1,if n +1 >3
and the fact that o n k(o) = {h(x)}, if n + 1 = 2, we have z # h(x). We

orient the injective segment Ui: o hi(x) from x to h"*!(x). We denote by
< the natural order induced by this orientation with x < h(x). We first
consider the case where h™%(z) < z. Let B = a\{h(x)} be the compact sub arc
joining h™?*(z) to z. We have h(B)n B = @. Let ¥V be a small connected
neighborhood of B such that (V) n V = @. Call ¢, an isotopy of M with
compact support contained in ¥V and such that ¢, = Id and ¢,(z) = h™%(2).
We can define h, as ¢h. By 1.3, the conditions A(V)n V = @ and
supp (¢,) < V imply that Fix (p,h) = Fix (h). Furthermore, since h™*(z) e V,
we have h™'(z) e (V) which does not intersect supp (¢,). It follows that
(@1h) (h™*(2)) = h™(2), and hence we obtain (9, h)*(h™2(2)) = ¢,(2) = h™*(2).
We now consider the case z < h™?(z). We choose z, = z < z; € .. € z,

= h™?(z) in the segment U hi(ow) such that the subsegment [z, z;]
is disjoint from the image h([z, 1,2 ]), for i = 1,..,k We can find neigh-
borhoods V., .., V;, .., V, of [zq,2.], .., [2i=1>2i ], > [Zk—1, 2] such that
W) n(Uj<iV;) = @. It is easy to construct a sequence of isotopies with
compact support @}, ..., @ such that i(z;_,) = z;and supp ¢! = V,. By 1.3,
this last condition and the fact that h(V;) n (\ J;<;V;) = @, for i = 1, ., k,
imply the equality Fix (¢* .. ¢ 1h) = Fix (h). Moreover, since h™'(z) e h(V})
which is disjoint from Ule supp ©;, we have (o% ... 0 1h)*(h™*(z)) = h™*(2).
[]

COROLLARY 1.7. Let o be a translation arc for the homeomorphism h
of the connected manifold M. Suppose that some point of o is in the closure
of |Jns2h"(0), then there exists an isotopy {h,|te[0,1]} such that:

(1) ho = h;

(i) h, = h outside a compact subset of M\Fix (h);

(i) Fix(h,) = Fix (h);

(iv) hy, has a periodic point of period 2 in M\Fix (hy).

Proof. We can suppose that o ({ ,.h"()) = @. Then we will find

an isotopy {h, | t € [0, 1]} such that:

(1) ho = h;

(ii) o is a translation arc for each h,;
(i) Fix (h,) = Fix (h);
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iv) h%e) N o # @, for some n = 2;
(v) h, = h outside a compact subset of M which does not depend on .

It will then suffice to apply proposition 1.6 to h; .

We denote by x and h(x) the extremities of o. Let us call ze a\{h(x)} a
point of accumulation of | J,>,h"(«). Let V' be a small connected neighborhood
of z which does not intersect h(a). Let n > 2 be the first integer such that
h'(a) intersects V. We can find an isotopy {o,|te [0, 1]}, with compact
support contained in V, such that ¢, = Id and @;h%(e)3 z. It suffices to
define h, as @,h. W

LEMMA 1.8. Let h be a homeomorphism of the manifold M. Suppose
that h has a non-wandering point for h which is not a fixed point, then
there exists an isotopy {h,|te€ [0, 1]} such that:

(i) hy = h;
(1) h, = h outside a compact subset of M\Fix (h);
(1) Fix (k) = Fix (h);

(iv) there is a periodic point of hy which is not a fixed point.

Proof. Call z a non-wandering point which is not a fixed point. Let V
be a small open connected neighborhood of z such that W(V)n V = Q.
Call n > 2 the first integer such that " (V) n V # @. Choose ye h (V)
NV # @. Call {g,]|te[0,1]} an isotopy with compact support in ¥ and
such that @,(h"(y)) = y. It suffices to put h, = @h. =

Proof of the Main Lemma. 1If h leaves invariant each component of
M\Fix (h), the Main Lemma follows from what we have done. If this
is not the case then by a result of Brown and Kister [BK] M\Fix (h)
has exactly two connected components which are exchanged by h. It is easy
to construct the required isotopy in this case. O

Remarks 1.9. (1) In the proof of the Main Lemma, we use the Brown-
Kister result only in the case where Fix (h) disconnects x from h(x). In
particular, if M 1is connected, of dimension > 2, and if Fix (h) is finite
we do not have to use it.

(i) It follows from [Bw2, Lemma 6.3] that a homeomorphism of a
connected manifold of dimension > 3 which is not the identity can be
isotoped without changing the set of fixed point to a homeomorphism with a
periodic point of period 2. Hence, the main lemma 1.1 is useful only for
dimension 2.
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