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The paper is organized into the following sections:

1. Geometry of the unit tangent bundle. We describe the metric in two
ways, and when the base space is a round sphere, we see that geodesics in
its unit tangent bundle project to spherical helices on the sphere.

2. Geodesics in US? Some of the phenomena show up in this case.
3. Helices in S3. Frenet equations, curvature, torsion and writhe.

4. Sasaki’s equations. A general calculus for geodesics in the unit tangent
bundle UM of any Riemannian manifold M.

5. Proof of the Fundamental Constraint. A blend of the Sasaki and Frenet
equations.

I am grateful to Sharon Pedersen for a detailed reading of the manuscript,
and for a number of improvements. Thanks also to Dennis DeTurck for
reading the manuscript, and to Wolfgang Ziller for telling me about
Sasaki’s work. Finally, thanks to the National Science Foundation for their
support.

1. GEOMETRY OF THE UNIT TANGENT BUNDLE

Let M be an n-dimensional Riemannian manifold, and (p(z), u(t)) a path
in its unit tangent bundle UM. It is customary to give UM the Riemannian
metric in which arc length s(t) along this path is given by the formula

SO =1p@e)12 + 1@,

where

p'(t) = tangent vector to the curve p(t) in M ,

v'(t) = covariant derivative of v(t) along p(t) in M ,

and the norms of these vectors are measured in the given Riemannian
metric on M.

When M is flat, and hence parallel translation is independent of path,
the above metric on UM is simply the product metric of M x S" 1. So
the constant speed geodesics in UM, for example, are just the paths
(p(t), v(1)) for which p(t) and o(f) are themselves constant speed geodesics

in their respective spaces. In particular, each geodesic in UM certainly
projects to a geodesic in M.
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But when M is curved, the story is quite different. A geodesic in the unit
tangent bundle UM need not project to a geodesic in M. We can already
see this when M is a round two-sphere.

SZ

FIGURE 1 FIGURE 2

/

In each of Figures 1 and 2, we depict a path (p(t), o(t)) in the unit
tangent bundle US? of a round two-sphere S* of radius 1. Though the paths
are different, their initial points are the same and their terminal points are
the same.

In the first path, the point p(¢) travels at constant speed along a geodesic
of length 2r on S? At the same time the tangent vector o(f) rotates at
constant speed with respect to a parallel coordinate frame, turning through
a total angle © from beginning to end. The length of this path (p(z), u(t)) is

4+ 4r?.

If the base space were R? instead of S?, this path in the unit tangent
bundle would be a geodesic, indeed a shortest connection between its
endpoints.

In the second path, the point p(t) travels at constant speed along a
semicircle of length w sin r. At the same time the tangent vector u(t) rotates
at constant speed with respect to a parallel coordinate frame, turning through
a total angle somewhat less than m because of the curvature in the base
space S2. The savings is half of the area 2n(1—cos r) inside the small circle.
Hence the total angle that v(t) turns through is = cosr. It follows that the
length of this second path (p(t), v(t)) is =.

So the second path is shorter than the first. Indeed, it is a minimizing
geodesic in US? between its endpoints, whose distance apart is therefore ©. -

Yet its projection on the base space S* is a small circle, not a geodesic. j
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Immediately one asks: which curves on S" are projections of geodesics
in US"?

In answering this, we use another approach to the geometry of US",
viewing it as the homogeneous space SO(n+1)/SO(n—1). Here, the special
orthogonal group SO(n+ 1) is given the usual bi-invariant Riemannian metric,
and then the inner products in directions orthogonal to the‘ cosets of
SO(n—1) are transfered to the coset space SO(n+ 1)/SO(n—1). This makes the
projection map from SO(n+ 1) to US" a Riemannian submersion. We leave it
as an exercise to show that this Riemannian metric on US" coincides with
the one described earlier.

A geodesic in SO(n+ 1) which starts out orthogonal to one of the*cosets
of SO(n—1) remains orthogonal to all the cosets, and projects to a geodesic
in SO(n+1)/SO(n—1) = US". Furthermore, all the geodesics in US" are
obtained this way.

Suppose, for example, that n = 3. If (p(¢), v(t)) is a geodesic in US?,
then by the above, there must be a geodesic h(t) through the identity in
SO(4) such that

h(t) (p(0)) = p(r) and  A(r) (1(0)) = v(r).

But every such geodesic h(t) in SO(4) consists of independent, constant speed
rotations in a pair of orthogonal two-planes in four-space. Hence p(t) travels
along a spiral on an invariant torus, that is, along a spherical helix.

Notice that the isometry h(tf) which takes p(0) to p(t) and v(0) to v(t),
also takes the entire helix {p(t)} to itself. Hence it takes the Frenet frame
of the helix at p(0) to the Frenet frame at p(t). It follows that

u(t) = aT(t) + bN(t) + cB(t)

has constant coeffients with respect to this Frenet frame.

Beyond S°, nothing new happens for geodesics: it is easy to see that
every geodesic in US™ lies inside a totally geodesic submanifold US3. Indeed,
if (p,v) and (g, w) are nearby points on the geodesic, then the vectors
P, v, g and w determine the corresponding S°.

When it comes to proving the Fundamental Constraint, we will capitalize
on this observation by restricting our attention to S3.

We conclude: the only curves on S" which can be projections of
geodesics on US" are spherical helixes (allowing great and small circles and

points as special cases) which lie on great 3-spheres. All such spherical helixes
will appear in this way.
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