1.3. Après les travaux de Châtelet.

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 34 (1988)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: **25.05.2024**

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

trique les transformations qui permettent de passer d'une quadrique nonsingulière X de \mathbf{P}^3 à une conique de \mathbf{P}^2 définie sur l'extension discriminant et ainsi en particulier d'obtenir le principe de Hasse pour ces quadriques.

1.3. Après les travaux de Châtelet.

En 1949, B. Segre tout en rendant hommage au travail de Châtelet rappelle l'existence du travail de Severi (1932) qui avait échappé à l'attention de Châtelet, et indique en particulier que Severi par ses méthodes avait obtenu $(d+1)^d$ au point 2) du théorème ci-dessus. C'est dans cet article que Segre transforme les « variétés de Brauer » de Châtelet en « variétés de Severi-Brauer ». Convenons qu'il eut été plus juste de les appeler variétés de Severi-Châtelet.

Alors que la théorie de Châtelet insiste de façon très moderne sur l'isomorphie sans exceptions, Amitsur en 1955 refait la théorie d'un point de vue plus birationnel (corps de décomposition « générique » d'une algèbre centrale simple) et redémontre l'énoncé 2) du théorème ci-dessus. Il établit le résultat intéressant suivant: si X et Y sont deux k-variétés de Severi-Brauer k-birationnellement équivalentes, les classes a(X) et a(Y) qui leurs sont associées dans le groupe de Brauer de k engendrent le même sous-groupe. On ignore si la réciproque vaut. Le point de vue de l'ensemble de cohomologie $H^1(\operatorname{Gal}(K/k), PGL_{d+1}(K))$ réapparaît dans un article de Roquette (1963). Signalons aussi un article d'Amitsur (1981).

Le point de vue moderne sur les variétés de Severi-Brauer qui a été esquissé plus haut fut dégagé par Serre dans ses livres *Corps locaux* (1962) et *Cohomologie galoisienne* (1965). Après l'introduction des algèbres d'Azumaya, qui généralisent les algèbres simples centrales, le corps de base étant remplacé par un anneau commutatif (Azumaya 1951, Auslander/Goldman 1960), Grothendieck (1965) dans une série magistrale d'exposés sur le groupe de Brauer d'un schéma étudie les schémas de Severi-Brauer relatifs.

1.4. Importance des variétés de Severi-Brauer.

En arithmétique, les variétés de Severi-Brauer servent de référence dans l'étude des variétés rationnelles plus générales (une variété X est dite rationnelle si elle devient birationnellement équivalente (mais non nécessairement isomorphe) à l'espace projectif sur une extension finie de son corps de base.) Pour d > 1, aucune des propriétés du théorème ci-dessus ne vaut en général, mais on peut essayer de trouver des substituts. Nous reviendrons là-dessus au paragraphe 3.