Introduction

Objekttyp:  Chapter

Zeitschrift:  L'Enseignement Mathématique

Band (Jahr): 34 (1988)

Heft 1-2: L'ENSEIGNEMENT MATHEMATIQUE

PDF erstellt am: 25.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



L’Enseignement Mathématique, t. 34 (1988), p. 23-42

EULER’S FAMOUS PRIME
GENERATING POLYNOMIAL AND THE CLASS NUMBER
OF IMAGINARY QUADRATIC FIELDS

by Paulo RIBENBOIM

This is the text of a lecture at the University of Rome, on May 8,
1986. The original notes disappeared when my luggage was stolen in
Toronto (!); however, I had given a copy to my iend Paolo Maroscia,
who did not have his luggage stolen in Rome (!) and was very kind to
let me consult his copy. It is good to have friends.

INTRODUCTION

Can a non-constant polynomial, with integral coefficients, assume only
prime values?
No! because of the following

THEOREM. If f(X)e Z[X], deg(f) > 0, there exist infinitely many
natural numbers n such that f(n) is composite.

Proof. It is true if f(n) is composite for every n > 1. Assume that
there exists n, = 1 such that f(n,) = p is a prime. Since lim | f(n)| = oo,

n— O

there exists n; = ny, such that if n > n; then | f(n)| > p. Take any h
such that ny + ph = n,. Then | f(ny+ph)| > p, but f(ny+ph) = f(ny)
+ (multiple of p) = multiple of p, so | f(ny+ ph)| i1s composite. O

On the other hand, must a non-constant polynomial f(X)e Z[X] always
assume a prime value?

The question is interesting if f(X) is irreducible, primitive (that is, the
greatest common divisor of its coefficients is equal to 1) and, even more,
there is no prime p dividing all values f(n) (for arbitrary integers n).

Bouniakowsky, and later Schinzel & Sierpinski (1958) conjectured that
any polynomial f(X) e Z[X] satisfying the above conditions assumes a prime
value. This has never been proved for arbitrary polynomials. For the specific
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polynomials f(X) = aX + b, with gcd(a, b) = 1, it is true — this is nothing
else than the famous theorem of Dirichlet: every arithmetic progression

{a+ kb|lk=0,1,2,..} with gcd(a,b) =1,

contains infinitely many primes.

In my new book entitled “The Book of Prime Number Records”
(Springer Verlag, 1988), I indicated many astonishing consequences of the
hypothesis of Bouniakowsky, which were derived by Schinzel & Sierpinski.
But this is not the subject of the present lecture.

Despite the theorem and what I have just said, for many polynomials
it 1s easy to verify that they assume prime values, and it is even conceivable
that they assume prime values at many consecutive integers. For example,
Euler’s famous polynomial f(X) = X* + X + 41 is such that f(n) is a prime
forn = 0, 1, ..., 39 (40 successive prime values):

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281,
313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971,
1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601.

However, f(40) = 40% + 40 + 41 = 40 x 41 + 41 = 41~
Note that if n > 0 then (—n)* + (—n) + 41 = (n—1)*> + (n—1) + 41, so
X? + X + 41 assumes also prime values for all integers

n=—40, -39, .,—-2 —1.

Which other polynomials are like the above ?

Some of these polynomials may be easily obtained from X? 4+ X + ¢
by just changing X into X — a, for some a > 1. For example, (X —a)*
+ (X—a) + 41 = X?> — 2a—1)X + (a*—a+41); taking a = 1 gives X?
— X + 41, which assumes primes values for every integer n, — 39 < n < 40,
while taking a = 40, gives X? — 79X + 1601, which assumes primes values
for every integer n, 0 < n < 79, but these are the same values assumed by
X? 4+ X + 41, taken twice. In summary, it is interesting to concentrate the
attention on polynomials of the form X? + X + ¢ and their values at
consecutive integers n = 0,1,.. If the value at 0 is a prime ¢ then
¢ = q. Since (q—1)*> + (g—1) + ¢ = ¢?, then at best X* + X + ¢ assumes
prime values for O, 1,2,..,qg — 2 (like when g=41). For example, if f(X)
= X?+X +¢q and q = 2,3,511,17,41 then f(n) is a prime for
n=~0,1,.,q9— 2 However if ¢ = 7,13,19, 23,29, 31,37 this 1s not true,
as it may be easily verified.

Can one find g > 41 such that X? + X + g has prime value for
n=201,.,q9—2?
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Are there infinitely many, or only finitely many such primes ¢? If so,
what is the largest possible g ?

The same problem should be asked for polynomials of first degree
f(X) = aX + b, with a,b > 1. If f(0) is a prime g, then b = q. Then
flg) = aqg + q = (a+1)q is composite. So, at best, aX + g assumes prime
values for X equal to 0, 1, .., g — 1.

Can one find such polynomials? Equivalently, can one find arithmetic
progressions of ¢ prime numbers, of which the first number is equal
to q?

For small values of g this is not difficult.

If g = 3, take: 3,5,7,s0 f(X) = 2X + 3.
If g = 5, take: 5,11, 17,23,29,s0 f(X) = 6X + 5.
If ¢ = 7, take: 7, 157, 307, 457, 607, 757, 907, so f(X) = 150X + 7.

Quite recently, Keller communicated to me that for ¢ = 11, 13 the smallest
such arithmetic progressions are given by polynomials f(X) = d{; X + 11,
respectively f(X) = dy3X + 13 with

d;; = 1536160080 = 2x3x5x7x7315048,
di; = 9918821194590 = 2x3x5x7x11x4293861989 ;

this determination required a considerable amount of computation, done by
Keller & Loh.

It is not known whether for every prime g there exists an arithmetic
progression of g primes of which the first number i1s g. Even the problem
of finding arbitrarily large arithmetic progressions consisting only of prime
numbers (with no restriction on the initial term or the difference) is still
open. The largest known such arithmetic progression consists of 19 primes,
and was found by Pritchard (1985).

The determination of all polynomials f(X) = X2 + X + g such that
f(n) is a prime for n = 0, 1, .., ¢ — 2, is intimately related with the theory
of imaginary quadratic fields. In order to understand this relationship,
I shall indicate now the main results which will be required.

A) QUADRATIC EXTENSIONS

Let d be an integer which is not a square, and let K = Q(ﬁ) be the
field of all elements o = a + bﬁ, where a,be Q. There is no loss of
generality to assume that d is square-free, hence d # 0 (mod 4). K| Q
1S a quadratic extension, that is, K is a vector space of dimension 2 over Q.
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