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142 S. A. MITCHELL

x 18 a cut point (with respect to p) if there is a geodesic from p to x
that minimizes arc length up to x but no further. The cut locus is the set
of cut points. Similarly a vector X in the tangent space T, is a tangent
cut point if exp,X is a cut point along the geodesic exp,(tX). The tangent
cut locus 1s the set of all such points in T,, and is homeomorphic to the
unit sphere in T,. When M = G/K we take p = 1.

(2.26) THEOREM. Let G/K be a simply-connected symmetric space, with G
simple. Then the tangent cut locus is precisely the K-orbit in m of the outer
wall of the Cartan simplex A,,. It is therefore canonically identified with the
topological building of the associated real form Gyg.

As usual, the assumption G simple is just for convenience. We sketch
the proof: the first assertion is a fairly easy consequence of Theorem (1.8),
and is left to the reader. Now consider the building % . It is a quotient
space of Gg/Bg x Ay = K/Cgt,, X Ay, where A, is a simplex of dimension
(rank G/K)-1; we take A, to be the outer wall of A,,. For each
I <S¢k, let A; temporarily denote the corresponding face of Ag; i.e.
{XelAy:afx) = O0Viel}. Then the K-orbit of A, in m, KA,, is also a
quotient of K/Cgty, x A,. The relations are (k;X) ~ (k,X) if X € A, and
k, = k, mod K,. But K; = K n O, so these relations are identical to the
ones that define the building. ]

§ 3. Loor GRrours

Let LG, LG, denote the free loop spaces. Let G denote the group
of loops which are restrictions of regular maps C* — G¢, and let L,,G
= Ly,Gc n LG. Thus if we fix an embedding G = GL(n, C), L,,,G consists
of the loops f in LG admitting a finite Laurent expansion f(z) = Z:l: _mAkz",
whereas L,,G¢ consists of the loops f in LG¢ such that both f and
£~ admit finite Laurent expansions. We will also write GC for L,,Gc.
In fact éc is the group of points over C[z, z~'] of the algebraic group
Gc. Its Lie algebra is the loop algebra gc of regular maps C* — g.. The
integer m in the above Laurent expansion defines a filtration of G by
finite dimensional subspaces; we give G the corresponding weak topology.

Let P denote the subgroup of GC consisting of regular maps C — G
(ie. maps with nonnegative Laurent expansion, or G¢rp)» and let B denote
the Iwahori subgroup: {f € P: f(0) € B™ }. Finally, let N = L, ;N¢, and recall
that W can be regarded as a “subgroup” of @C, since R < Hom (S?, T)
< L,,T. More precisely, we have N [Te = W,and W = W.
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The affine root system ® is the set Z x ®. It can be thought of as a
set of affine linear functionals on ¢, but for our purposes it is just a device
for encoding combinatorial information about the affine Weyl group and
Gc. In particular, to each (n, o) € ® we associate a root subalgebra X, ,
of ge consisting of the regular maps C* — X, homogeneous of degree n.
These subalgebras are one—dimensional, and are precisely the nontrivial
eigenspaces of the following T'*! action: The constant loops T* act in the
obvious way, and the extra S' factor acts by rotating the loops. We also
have root subgroups U, , = exp X, , GC One can easily check that W
(actmg by left conjugation) permutes the root subgroups. The resulting action
of W on @ is given by (Wh) - (n, o) = (n+ o)), war) for A € hom (S*, T), we W.
The various additional structures associated with ordinary root systems can
be defined here as well. The positive roots ®* are the (n,) with n > 1
or n = 0 and o < O (note these correspond to the Iwahori subgroup E);
the remaining roots are negative. As in the finite case, the length of an
element o in W is equal to the number of positive roots taken to negative
roots by o (in particular this latter number is finite, as is clear anyway
from the above formula for the W action). The simple affine roots are
defined as the set of elements of ®* which are indecomposable with respect to
addition: (m, o) + (n, B) = (m+n, a+P) (if o+ P is a root). Hence the simple
roots are (0, —a), = (0, —oy) and (1, o).

To each root (n, o), we can also associate a “little SL,” subgroup
generated by U,, and U_, _,. In particular GC ; 1s the subgroup cor-
respondmg to the ith simple affine root, 0 < i < I. Thus GC ; = GC J1f i # 0,
and GC,O corresponds to (1, a,). For example if G = SU(2), GC,O is the

~

. b , ~
subgroup of matrices ( a_l dz) with ad — bc = 1. We let G, = G ; n LG.
cz '

Again G; = G, if i # 0. Note that for all i, evaluation at z = 1 gives an
isomorphism G; 5 G; & SU(2).

(3.1) THEQREM. Assume G is simply-connected. Then (C~?C,I§, ﬁ, ~) is a
topological Tits system satisfying the four axioms of § 2.

Proof. That (GC,E, N, §) is a Tits system in the ordinary sense is
essentially due to Iwahori and Matsumoto [16]. (They work over a complete
local field K; here we take K to be the field of infinite Laurent series
bounded below. It is not hard to get from the Chevalley group G, to
Gz, z-1y = GC .) See also Kac and Peterson [17].

Clearly B and N are closed subgroups and W is discrete. For Axiom
(2.11) we need to show that if W is an irreducible affine Weyl group,
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and [ is a proper subset of S, then VT/I 1s finite. This is obvious since
the elements of I have a common fixed point (i.e. the intersection of the
correspondmg reflection hyperplanes is nonempty) In Axiom (2.12) we take
A, = G,. We have G B = GC B=B U sB = P,. In particular P,/B

G,/(G,nB) = SU(2)/T = CP!, which also proves Axioms (2.20) and

(2.21). ]

(3.2) CoroLLARY. Q.G is a CW-complex with cells of even dimension,
indexed by Hom (S*, T). The Poincaré series for its integral homology is

alg

ZXGHom(sl T)tZI(X)’ where lb») is the minimal length accuring in AW.

Identifying Hom (S*, T) with WS, the closure relations on the cells are given
by the Bruhat order on W?5. N

Remark. An explicit formula for I[(\) is given in [16], Prop. 1.25:
= (s ol — [ {o > 0:a(d) > 0} .
We will also need the “Iwasawa decomposition” (see [17], [27], [29]):

(3.3) THEOREM. 5C = Q,,G x P. ]

Remark. Note that (3.3) shows that the associated building, which we will
be denoted simply by %4, is a quotient of L,,G/T x A. The equivalence
relation is then (f,T,X) ~ (f,T, X) if Xe A, and f, = f, mod LG n P,.

§4. QUILLEN’S THEOREM FOR Loop GROUPS
In this section we will give Quillen’s proof of the following theorem.

(4.1) THEOREM. Let G be a compact Lie group. Then the inclusion

Q,,G — QG is a homotopy equivalence.

If G is simply connected, let 4 denote the topological building associated
to the algebraic loop group L,,G¢ as in § 2.

(4.2) THEOREM (Quillen). Q,,G acts freely on s, with orbit space G.

Proof of (4.1). It is easy to reduce to the case when G is simply
connected. Since Bg; is contractible by Theorem 2.16, we conclude at once
from Theorem (4.2) that Q,,G — QG is a weak equivalence. Since both
spaces have the homotopy type of a CW-complex, the map is in fact a
homotopy equivalence. N

e
~



	§3. Loop Groups

