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A SIMPLE NASH-MOSER IMPLICIT FUNCTION THEOREM

by Xavier Saint Raymond

This paper is devoted to the so-called "Nash-Moser implicit function

theorem", a very powerful method which during the last decades helped to
resolve several difficult problems of solvability for nonlinear partial differential

equations (see e.g. Nash [7], Sergeraert [10], Zehnder [11], Hörmander [2]...
and others ; unfortunately, the proofs that are commonly available

(Moser [6], Schwartz [8], Sergeraert [10], Zehnder [11], Hörmander [2, 3, 4],
Hamilton [1]) are very long and technical, and rather frightening for the

uninitiated reader.

To correct this impediment, we present here a simple statement and a

simple proof of this type of result, but it should be considered merely as

an introduction to the subject. Indeed, the result is neither new nor optimal,
and the interested reader would benefit by studying more elaborate versions
such as that of Hörmander [2, 3, 4]. However, owing to this simple goal,
we have been able to write a proof which avoids the use of too many
parameters (usually found in such a proof) and shows more clearly the key
ideas.

Let us first informally present the problem. One wants to solve an
equation

F(u) f
where F involves the variables x, the unknown function u(x) and its
derivatives up to the order m. If one can construct a solution u0 of
F{u0) fo for an f0 close to /, the problem can be rewritten as an
implicit function problem by considering c|>(u, /) - F(u) - f which vanishes
at (u0, f0). It is then sufficient to prove that the equation (J)(d, g) 0
defines u as a function of g in a neighborhood of (u0, /0) large enough
to contain /.

To prove implicit function theorems in infinite dimensional spaces (as

spaces of functions usually are), one commonly uses iterative schemes. The
simplest one is known as Picard's iterative scheme: \|/ being a right inverse
of (d<\)/du) (uq /0), one sets

Vk ~ f) 7 Uk+ 1 uk F Vk
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To prove the convergence of such a scheme, one needs estimates for the

sequence vk; but if one can estimate s derivatives of vk (symbolically denoted

by \vk\s), one gets estimates for only s — m derivatives of <\>(uk + 1,f)
since cf> involves the derivatives of uk+1 up to the order m; thus the

convergence will hold by induction only if the right inverse satisfies an
estimate

| v|/(<p)ls < C|cp|s_m

which is true only for a very special type of equations, namely the elliptic
equations.

However, it is known that other types of equations are also solvable (for
example hyperbolic equations), and for these, the previous scheme would give
a recurrence estimate of the form

I Vk + 1
I

s ^ 2
I Vk I

s + d

with a positive shift d in the number of derivatives that are controlled,
so that this scheme is not convergent. To overcome this difficulty, Nash [7]
proposed another scheme involving smoothing operators so that \ vk\s could
be estimated inductively for a fixed s; since this improvement came at the

cost of introducing large constants, it was also required to find a scheme

with much faster convergence. We won't describe here Nash's scheme nor its

improvements by Hörmander [2, 3, 4], but only notice that such complicated
schemes are needed if one is interested in optimal results with respect to the

regularity of the solution: without their help, the function / on the right
side must be very smooth in order to obtain some smoothness of the

solution u.

In the theorem stated below, we will establish a C00 existence theorem

so that the number of derivatives that are used (provided that it is finite)
does not matter. For this reason, we are going to use the much simpler
scheme proposed by Moser [5] which consists alternately in using Newton's
scheme and Nash's smoothing operators: \|j(u) being a right inverse of
(dfy/du) (u, f) and Sk being a sequence of smoothing operators closer and

closer to the identity, one sets

Vk-K"*>/)> 1 "fc + Skvk

The key to get the estimates for vk is to have at one's disposal estimates

of linear growth type (see estimate (3) below), which are called "tame estimates"

in Hamilton [1] ; such estimates are now classical for <\> itself or for its
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derivatives, but the main problem in the applications of this Nash-Moser

method is to prove them also for the right inverse \|/; here, we will assume

that these estimates hold (cf. (1) and (3)). In the proof we will also use

the simple interpolation formula of Sergeraert [9] who introduced it to prove
that Moser's scheme could lead to C00 results as well.

After the proof of the theorem, we propose a short description of the

classical application of this type of result to the problem of isometric

embedding of Riemannian manifolds, but this is given merely as an illustration
of the method, and we refer to Hörmander [3], Sections 2 and 5, for
the details.

To complete this lengthy introduction, we confess that the result stated

here is probably the worst that can be found in the literature on the

subject with respect to the number of derivatives that are used. One reason
is that we have taken all the shifts in the number of derivatives equal to
the maximum, d, to avoid the multiplicity of parameters. In specific
applications however, it is obvious that this can be much improved.
Throughout the paper, we consider the expression c|)(u, /) for various u,

but always the same / e C00 so that it can be written cj)(w) as well;
finally, we recall that the function u defined in the open subset Q of R"
belongs to the Sobolev space HS(Q) if all its derivatives up to order s

are square integrable over Q (see also the definition with the Fourier transform
in the appendix when Q R"). We can now state the result.

Theorem. Let c|> : if °°(R") -* tf°°(Q) where Q is an open subset of
R"; one denotes by | \s the norm in H%Rn) and by || ||

s
the norm

in HS(Q). One assumes that there exist u0 e Hco(R"), an integer d > 0,
a real number 5 and constants C1,C2 and (Cs)s^d such that for any
u,v,we if °°(Rn),

(Vs^d, \\m\\s<CJLl + \u\,+d)
(1) I u - u0 I

3d < 8 => < II §'(u)v II 2d < Q I V I

3d

{ II (t>"(w) (v, w) II 2d « C2 I V I

3d I w I

3d

(when one deals with (nonlinear) partial differential equations of order m,
nthese estimates classically hold for d m —). Adoreover, one assumes that

for every u e such that \ u - u0S, there exists an operator
v|/(u) : Hœ(Q)Hœ(R")satisfying for any cp e

(2) <|>'(w)\|/(u)<p (p in Q, and
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(3) Vs > d, \ i[/(M)cp U « Cs(||<p||s+(J + Hs+J<p||2(;)

(the so-called "tarne estimate"). Then, if || <&(u0) || 2d sufficiently small

(with respect to some upper bound of 1/8, \u0\D and (CS)S^D where

D 16d2 + 43d + 24 - sic there exists a function u e HGO(Rn) such that
4>(w) 0 in £1

Remark. This theorem is stated with the Sobolev spaces ff00^)
f]s^0Hs(Q) and Hco(R") to be used in local solvability problems for

nonlinear partial differential equations, but one can replace these spaces by
gradations of Banach spaces Bs and Bs respectively with norms | \s and
|| }\s if there exist some smoothing operators (Se)e>1:B00 -» B^ satisfying
for every v e Bœ, 0 > 1 and s and t ^ 0

(the construction of such smoothing operators in the case of Sobolev spaces
is given in the appendix); we will also assume that \ v\s < \v\t whenever

s ^ t. Actually, we will only use the operators SQk where the sequence of
real numbers 0fc is defined in the following way: 0O ^ 2 to be chosen,

then 0fc + 1 0f/4; here are the properties of this sequence that we will use

indeed, (5/4)j ^ 1 + (j/4) implies 6j 0(O5/4)J ^ 0 J+ (j/4), then £J>0 0j 3

^ 00 3(1 — 0o 3/4)_1 < 0o 1 since 0d2 < 1 — 0o 3/4 when 0O ^ 2.

The solution u of the theorem will be obtained as the limit of the

sequence uk that is constructed in the following lemma.

Lemma 1. With the same assumptions as in the theorem and with the

smoothing operators SBk of the remark, the sequences

are well defined for sufficiently large 0O if || 4>(m0) II 2d ^ Go 4> more

precisely, there exist constants (Ut)t^d and V (independent of k) such

that for k^O,

(4)
fl S.vl^C^-^vU if s^t;
fj V - VL <'CStt0s"t I v\t if 5 ^ t

(5)

vk - \|j(uk)<b(uk), uk+1 uk + SQkvk

(Ok

ii)k

Hi)k

I % - u0 I

3d < 8 and || c|>(%] || 2d ^ 0k 4
;

\vk\3d + 3 < VQf3 ;

Vf ^ d, (1 + \uk+ i\t + 2d) ^ Ut 0fcd(l + \uk\t + 2d)
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Proof. Since the property (i) implies that the sequences uk and vk

are well defined (the operator i|/(w) exists by assumption if | u — u0 13d < 8),

it is sufficient to prove (i), (ii) and (iii), and this is going to be done by
induction. The property (i)0 is true by assumption.

Proof of (ii). The tame estimate (3) gives for every t ^ à

(6) I%1< < C(ll<M«fc)llr+d+kUJ#Oll2<i)-

For t d and using (i)k one gets

(7) I Vk I
à ^ C^(f + \uk — U0\2d^r \uo\2d) II 4>(wfc) II 2d ^ V0® k

where V0 Cd(l + 8 + |u0|2d). The estimate (ii) will be obtained by
interpolation between (7) and an estimate

(8) I % I

T ^ F10^r

for a large T. To prove (8), we can use the first assumption (1) to
estimate <\>(uk) in (6); this gives

Pj
I vk It ^ Q(Q + d(l + \Uk\t + 2d) + \Uk\t + d^2d(^ + \Uk~ Wol3d+ I Wol 3d

^ Q(Q + d + ^2d(l T Ô + \u0\3d)) (1 + \uk\t + 2d) •

We now fix the values N 4(2^+1) and T 3d + 3 + (2d + 3) (N + 3).

The estimate

(10) (1 + \Uj\T + 2d) ^ (1 + \Uo\t + 2d)0f

obviously holds for j 0; moreover, if it holds for some j < k, we get
from (iii)j and (5)

(1 + K'+ilr + 2d) ^ UTQfd(l + \u0\T+2d)Qj{2d + 1)

(f/r07i)( i+\u0\T+2d)Bffr»
so that (10) holds by induction for j < k if one takes 0O ^ UT. Thus one
gets (8) by replacing | uk\T+2d in (9) by the estimate (10) for j k;
note that V1 depends only on | u0 |

T+2d and the constants C.

With Qk 0fc1/(2d + 3), the interpolation formula can now be written as

I Vk I
3d + 3 ^ I Sç>k Vk I

3d+3 + I Vk — SQk Vk I
3d + 3

< c3d+3,ßld+3\vk\d + C3d + %TQld+*-T\vk\T
^ ^3d+3fd^0®k 3 + ^3d+3, T^l^k3

because of (7), (8) and our choice of T, and this is (ii)fe.
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Proof of (iii). It follows essentially from the estimate (9) above, if one
observes that | uk + 1

\

t + 2d can be estimated in terms of | vk \t because of the
relations (4) : indeed, since uk + 1 uk + SBk vk,

I Uk + 1
I

t + 2d
I Uk \t + 2d + I $Qk Vk\t + 2d ^ I Uk \t + 2d T Q + 2d, k

^
I Vk \t

whence (iii) with constants Ut depending only on | u0 13d and the constants C

by using (9).

Proof of i Since uk — u0 lLj<k ^Qj vj> (i% f°r Î ^ & allows us to write

Vt g [0, 1], I uk + tSBk vk — u0 13d ^ ^ I SBj Vj I

3d ^ C3d? 3d X I Vj 13d

j^k j^k
^ c3d, 3dv X Of3.

j^k

By (5), y._er3 < 0n 1
so that we have for 0O ^ C3d 3dV/b

t—ij ^ 0 j '

(11) Vf 6 [0, 1], I uk + ts,-«01 <5 ;

for t 1, this gives | uk+1 — u0 \

3d<8(first part of (i)t+1).
To get an estimate for 4>(uft+1), we write the following Taylor formula

4>(%) + <b'(uk)Sf,kvk + (1 -tW(uk+ tS0kvk) (S6k vk, SBk ;

since vk — \\i(uk)$(uk),(2)gives <\>(uk <t>'(Mr) — in fl, whence

<!>(«*+I) <Pi + 92 with

"1

9i V(uk)(SBkvk-vk)and <p2 (1 vk)
J 0

Thanks to (11), we can use (1) to estimate <p1 and cp2 : with (4) and (u)k

one gets

Il 9l II 2d ^ Cl\ SQkVk — vk\ 3d ^ ^1^3d, 3d + 3® k
3

I Vk I

3d + 3

< c1c3d, 3d+3vdk 6

II 92 II 2d ^ ^2 I $ek Vk I

3d ^ ^2^ 3d, 3d
I Vk I

3d ^ C2C 3d, k
6

whence

Il + II 2d < CoOf6 (CoOf^Offi

(cf. (5)) where C0 depends only on V and the constants C; for 0O ^ C0,

we thus get (i)fc + i. The proof of the lemma is complete.
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The estimates (i) and (ii) in lemma 1 give the existence of a solution

u g H3d + 3(R") of the equation fy(u) 0. But actually, the proof of property (ii)

can be modified to prove an estimate for \vk\s for every s ^ d.

Lemma 2. There exist constants {Vs)s^d such that the sequence vk

of lemma 1 satisfies for every k ^ 0 and s ^ d

\vk\, < Vßf3

Proof Keeping the value N 4(2d+l), we get from (iii) and (5) that

(i + k+ilt+2d)0k"/i « + {Ußfx) (1 + \uk\t+2d)QfN ;

for any fixed t, 0fc ^ Ut for sufficiently large k since 0fc tends to infinity,
so that the sequence (l + \uk\t+2d)QkM *s bounded; substituting this into (9),

we get an estimate

(12) \vk\t Wfii
where N 4(2d+l) does not depend on t. Now, for any s ^ d we
can rewrite our interpolation formula with t s + (s — d)(N + 3) and
0fc 0 !/(*-<*>

I vk I

s ^ I ^ek vk I

s + I vk — $Qk vk I
s

< cs,M~d\vk\d + csß^\vk\t
< Cs,dV0Qk3 + Cs,tWßf3

where we have used (7) and (12).

Proof of the theorem. Let uk and vk be as above. From lemma 2 we have

I SQjVj\s ^ CatS\vj\8 < Cs,sVßf3

for any j ^ 0 and s ^ d9 so that the sequence uk u0 -I- £ SQ .Vj is

convergent in every H%R") (£ 0r3 < a) by (5)). Moreover,'The'limit
m g F^fR") of the sequence uk satisfies

II II 2d ^ II <Kwfc) II 2d + II fy(uk-\rt(u — Uk))(u — Uk)dt
Jo

^ Il 4*(%) Il 2d F Ci I 1/ % I

3d

for any k, so that $(u) 0 by taking the limit for k oo.
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Application to the local isometric embedding
OF A RlEMANNIAN MANIFOLD

(following Hörmander [3], Section 2).

Let M be a compact C00 manifold of dimension n and g a smooth
Riemannian metric on M. In local coordinates, we are thus given a positive
definite quadratic form

9 — X 9jkdXjdxk
j,k

The celebrated theorem of Nash [7], which is at the origin of the method,
states that for some (large) integer N, there is an isometric embedding
m : M -> R^, that is an injective map satisfying the system of equations

(13) <dju, dku> gjk 1 ^ j, k ^ n

where dj stands for d/dxj and < for the Euclidean scalar product in
RN ; thus, any compact Riemannian manifold can be thought as a submanifold
of a Euclidean space.

In the proof of this Nash theorem, one first establishes that the set of
metrics g such that the problem can be solved is a dense convex cone in
the set of all C°° metrics on M, and this leads to the following reduced

problem (see Hörmander [3] Section 2): show that the equation (13) can
be solved for every metric in some neighborhood of a fixed metric g°.

To illustrate the method described above, let us show how one can use

our theorem to prove this last property locally (and this will give a local
isometric embedding u: M -> RN).

Let Q {xeR";|x| < 1} and choose, near some point x0 e M, local
coordinates such that Q describes a neighborhood of x0 ; we take a

C qUq : R" -> R"(" + 3)/2 equal to

((^Ol ^ j^n 5 (Xj/2)i j^n, (Xj Xk)i ^ j<k^n)

in a neighborhood of Q ; this u0 is an isometric embedding for the

corresponding metric g° in Q, namely the metric g J 1 + | x |
2 and gjk x}xk

if j / k. Finally, for a metric g close to g°, we consider the restriction
<\>(u) to Q of the function

(14) ((dju>dkuy~~9jk)l^j^k^n

which is a function in Hœ(Q) valued in R"(n + 1)/2 for any u e ff°°(R") valued

in R"(" + 3)/2. Classically, estimates such as (1) hold for s > (n + 2)/2.

The derivative of 4> with respect to u is defined by

(15) c|y(u)v «dju, dkv} + (dku, djv})1
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If cis valued in R"(" + 1)/25 let us consider it as a function valued

in R"(" + 3)/2 by adding n components (pj 0 for 1 ^ j ^ n, and define

\|/(w)(p as a continuous extension to R" of the function

(16) v - ^A(u) >

where A(u) is the n(n + 3)/2 square matrix the rows of which are djU for
1 ^ j ^ n and djdku for 1 ^ j ^ k ^ n; thanks to our choice of u0, the

matrix A(u0) is invertible on fl, and so is A(u) for any u close enough
to u0. Since A(w)_1 is an algebraic function of derivatives of u up to
order 2, estimates such as (3) are again classical.

Finally, we have to prove that this operator \|/ inverts (j)' (formula (2)).

Applying A(u) to the function v in (16), one gets

<djU, v} - ^ <pj 0 1 < j ^ n

<djdku, p> - ^ cpj7c 1 ^ j ^ k ^ n

The derivative of the first equation gives {djdku,v} + {djU, dkv} 0,

and one gets also <djdku, u> + (dku, djv} 0 so that the second equation
and (15) give <\>'(u)v cp in £1

Thus all the assumptions of the theorem are fulfilled, and it follows that
we can get a solution if 4>(u0) is sufficiently small in some HS(Q) norm;
but according to (14), 4>(m0) g° - g, and the result is that (13) can be
solved for any metric g close enough to g°, as required.

Appendix :

Construction of the Smoothing Operators in Sobolev Spaces

Let us recall that v e H%R") means v e 6^'(Rn) and

M 2 (2tu)-" a+i^i2ri^)i2^ < oo.

Let X' [0, 1] be a C°° function taking the value 1 in a neighborhood
of 0 and vanishing for | % \^ ß,.For v e HC0(R") and 6 > 1 one sets

$k%) xwtfa
Then, if s ^ t,

(i+III2)* I v© 12 < e^-^i + i^/ei2)5-' I xfé/e) 12(i + |^|2)' | |2

< (20)2ts"t)(l + |£,|2}c I v(E,) 12
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since I x K 1 and | Ç/0 | ^ for (Ç/0) e supp x ; this gives the first
estimate (4) with Cs>f 2S~C

Similarly, for s ^ t,

(i + I^|2)s I vU)-0© 12 11 - 12(1+l^l2)s I v® 12 ;

a Taylor formula gives | 1 — x(£/ö) I ^ Q I Iwith Ck sup | %{k) \/k\
for any k e N since x(0) 1 and Xo)(0) 0 f°r j > 0, so that for
t s + k

(i+I^i2)s I v\v-12 < cis 14/e 12(,"s,(i+i^I2)s I 12

< C(2_S02<S-"(1 + |^2)'|^)I2
whence the second estimate (4) with Cs t Cr_s sup | %(t~s) \/(t — s)\
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