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52 M. PAVONE

The purpose of this note is to give an elementary proof of the theorem,
by only using some “classical” properties of analytic functions and the Riesz
representation theorem on the dual space of C([ —1, 1]).

In several standard books on Banach algebras this result has been used
as an example to illustrate, in a special situation, certain general theorems
on commutative Banach algebras B with symmetric involution (an involution
on B is symmetric if (x*)” = (x")” for any x in B).

In [4] for example (exercise 10, p. 289), the theorem above follows as
an application of a theorem which characterizes the extreme points of the
convex set {FeB*;F > 0,F(1) < 1} (Theorem 11i.33, p. 286). In [3]
(example (a), p. 273), the general theorem in question is a Bochner-like
representation theorem, where the space of integration is the space of
symmetric maximal ideals of B (Theorem 3, p. 272. The original example is
contained in [2], p. 450).

In all cases one looks at the theorem above in the context of a very
general theory, at the expense of the special features of the disc algebra
as a space of analytic functions.

2. PROOF OF THE THEOREM

Let F be a positive linear functional on A. Then F is automatically
norm-continuous, since A is a unital Banach algebra and || x* | = || x |
for any x in A (see [4], Theorem 11.31, p. 284). We might as well include
continuity as part of the definition of a positive linear functional, in order
to have our proof remain elementary and independent of the general theory.

Our first step 1s to show that any polynomial P(z) such that P(¢) > 0
for — 1 <t <1 can be written as P = f*f for some f in A. We start
by factoring P as '

P(z) = CI—L(Z—O‘i)nj(Bj-Z)Hk(Z"'Yk) (z—v1)»

where ¢ > 0, ; < —1, B; > 1 and the y,’s are non-real.
Now let g be the standard branch of the square root function, i.e.

g(pe’®y = pt2e®?  p >0, —n<BH<7.

Then g is an analytic functionon C\{t e R; t < 0},s0 (z—o;)'"* = g(z—o;)
and (B;—z)"/* = g(B;—z) are analytic functions on a neighbourhood of D for
all i,j. Moreover, such functions are real-valued on [—1, 1], so they are
self-adjoint elements of A by Schwarz’s reflection principle. If we now set
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f2) = ] =) [ B;—2"*T], = ¥e)

then f isin 4 and f*f = P, as required.

In particular, F(P) > 0 by the positivity of F. It then follows immediately
that F(P) > 0 for any polynomial P(z) such that P(t) = 0 for —1 <t<1:
indeed, note that by the previous case

eF(1) + F(P) = F(P+¢) > 0

for any € > 0, and let € go to zero.
If now P is any real polynomial, we can apply the previous case to
—P+|P| land P + || P ||,1, where

| Pll, =sup{| P(t)]; — L <t <1},
and we get
—F) || P, < FP) < FY | P [

(note that F(1) = F(1*1) > 0). In particular F(P) is real if P is real. It
follows that F(Re P) = Re F(P) and | F(Re P)| < F(1) || Re P |, for an arbi-
trary polynomial P(z). If © is a real number such that | F(P)| = €°F(P),
we then have

| F(P)| = €®F(P) = F(e®P) = Re F(e®®P) = F(Re ¢"P)
< F(1) | Ree®P ||, < F(1) || €°P ||, = FO) | P [l -
By the density of the polynomials in C[—1, 1], F extends to a (con-

tinuous) positive linear functional on C[—1, 1] of norm F(1). The Riesz

representation theorem then gives us a positive Borel measure p on
[—1, 1] such that

1
F(P) = J P(t)du(t), P polynomial .

= ]

Finally, by the continuity of F and of the functional f > [fdy, together
with the denseness of the polynomials in 4, we get

1
F(f) =J f@)du(), fed.
-1
This completes the proof of the theorem.

Remark. There is another approach that might seem more “natural”
than the one we took, but which does not prove as effective. We might
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think of looking at the restriction map of) = f|[—1,1], f €4, and
define a positive linear functional on of4) by G(a(f)) = F(f) (G is well
defined because o is one-to-one by the analytic continuation principle).
If G were continuous, we would use the denseness of a(4) in C[—1, 1]
to find a positive measure on [ —1, 1] which represents G and therefore F.
We know retrospectively that G must be continuous by the existence of such
representing measure, but it is not easy to prove it.

In fact, the map o(f)— f is not continuous (if ™! were continuous,
then o(4) would be complete. But «(A) contains the polynomials, so it
would be o(4) = C[—1, 1], which is incompatible with the existence of
continuous non differentiable functions on [ —1, 1]).
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