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The values of d? follow immediately from the I, and the d U. The values
n, for the case 0, as given in the Introduction, are the d g

2. THE REDUCED &-REPRESENTATION RING

2.1. For all s> 0 the group G, is the subgroup of G,,, obtained by
omitting the generator a,,;; let h;: G, —> Gy, be the embedding homo-
morphism. Via h, we can restrict an g-representation of Gy, ; to G, which
in terms of HR matrices means omitting A ;.

Let h*:DY. , - DY be the corresponding homomorphism of Gro-
thendieck groups, and EY = DY/h*DY,, the “reduced” groups; similarly
E® = D9h* DY, . They can easily be computed by means of the characters
of e-representations, as follows.

For Q and D the character of an irreducible unitary e-representation
is 0 except on 1 and & For C and K it is # 0 on all 4 elements; on the
essential generator (#¢) of C it is + i or — i for the two inequivalent
representations, and + 1 or — 1 in the case of K. For Gy, s even, we
infer from the table (2) that the character is 0 except on 1,& For G,
s odd, the character is O except on 1,& and two further elements z, ez;
on these the two inequivalent e-representations differ just by the sign of the
character.

If sis even, dY,, = dY = 29%; thus the restriction of an irreducible
e-representation must be irreducible, whence h*DY,, = DY, EV = 0. If 5 is
odd, d?,; = 2dY = 26*V/2; thus the restriction is the sum of two irreducible
e-representations, and since the character is 0 (except on 1, ¢) these two
must be inequivalent. Therefore h¥ DY, , is the “diagonal” of DY = Z @ Z,
and E/ = Z; its generator p, is represented by either of the two inequivalent
irreducible e-representations of G;, — p, by the other one.

In the orthogonal case the E? are computed similarly from (3). Since
d{ =2 and df = 1, the restriction from D¢ to D¢ yields twice the
generator, and E§ = Z/2; the same argument holds for s = 0 mod 8,
dJy, =2d2. Since df =4 and d? =2, we get E? = Z/2. From
d§ = df = 4 we get E§ = 0. As for s = 3, the character argument shows
that h¥ DY = diagonal of DS (=Z@Z), and E = Z. For s = 4,5, 6 the
dimensions d¢,; = d? show that E¢ = E¢ = E2 = 0. For s = 7, the
character argument yields h¥ D§ = diagonal of DY (=Z@Z), and E9 = Z.
Finally one has, for all s, E?, ¢ = E9.
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These results are summarized in the table
4 s 0 1 2 3 4 5 6 7 8 9

EY 0 Z 0 Z 0 Z 0 Z 0 Z

E° 1Z/2 Z/2 0 Z 0 0 0 Z 7/2 71/2

According to the Bott periodicity theorems the above table is just that
of the n, (U) and n,(0),s = 0, 1, 2, .... Before studying the relation as stated
in Theorem A we establish product structures in the reduced Grothendieck
groups of e-representations, i.e., of HR-matrices.

2.2.  We consider HR-matrices A, 4,, .., A, € U(n) and put, for
X = (Xg, Xq, .., X;) € RSH1

and 4, = E, (n X n unit matrix)

F) = Y x4,

0

For all x with | x| = 1, f(x) is a unitary matrix: this is, as mentioned
in the Introduction, precisely the meaning of the HR-matrix relations (1).
Let further B,, B,, ..., B, € U(m) be HR-matrices, and for

y = (y07y17"'9yt)ERt+1> BO = Ema

g(y) = %kak;
g(y) € U(m) for all y with | y| = 1. We define F by
fX)®E, E,® g ) |
—E,®9»" fx)"®E,

One immediately checks that F(x, y)FT(x, y) = (|x|*>+[y|*)E,,,,. Thus F(x, y)
e U(2nm) for all (x, y) e R°"**2 with | x|? + | y|?* = 1. Since the coefficient
matrix of x4 is E,,, the coefficient matrices of xi, ..., X5, Vo, .., ¥, constitute
a set of s + t + 1 HR-matrices € U(2nm). They are, explicitly,

9 A, ® E, 0 0 E,, 0 E Q®B,
( 0 _AJ®Em ’ —Enm 0 ’ En®Bk 0

with j = 1,..,s and k = 1,..,¢. In other words, we have a product of
g-representations of G, and G,

F(x, y) = <

U U~ pu
Dy X Dy > Dgyryy.
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Since addition in DV is by the direct sum of e-representations this product
is clearly distributive. Associativity (up to equivalence) is easily checked. We

[e 0]
thus get a ring structure in DY = @ DY; we have added the term DY = Z
1

generated by the ring unit. The ring DY is graded if the grading is by
s + 1 for D;.

From the HR-matrices (5) of the product one notes that if one of the two
factors is restricted from DY so is the product; ie, h*DY is a (graded)
ideal in DY, and we get a (graded) ring structure in DY/hxDJ = EY.

The same procedure yields, of course, a (graded) ring structure in

with grading s + 1 for E?. In 2.3 and 2.4 below these

S 9
s=—1

E9= @ E?

rings are described explicitly.

Remark 2.1. An easy computation shows that the rings EJ and EY
are anticommutative with respect to the grading, i.e., commutative except for
the factor (—1)*"V¢*D  This will not really be used since the EV and
E? are all 0, Z or Z/2. We just note that in the case Z, with generator
Ps, — Ps 18 given by the other equivalence class of irreducible e-represen-
tations, see 2.1.

2.3. Thering EY.

The generator p of E7, given by an irreducible unitary g-representation
of G,, has degree 2% if s is even, 2712 if 5 is odd. The product
PP € EJyr 41 has degree

26F1% 22 if s and t are even

+ . . .
20TV if s is even, t odd, or vice-versa ,

s +i2 if sandtare odd.

Thus, unless both s and t are even, the product is irreducible, i.e.,
PsPe = £ Pyiiv1- After choice of p; e E{ we can choose p; = p2,

Ps = P1P3 = P3P = P3,..,and for all odd s = 2r — 1, p, = p%; for even
s, EV = 0.

PROPOSITION 2.2. The product with p,eE 1 is an isomorphism EY
=E/., forall s. Forodd s =2 —1 we choose

Pa—y = pi,l=1,2,3, ...



84 B. ECKMANN

THEOREM 2.3. EUY is the polynomial ring Z[p,].

24. THERING E?.

We denote by o, the generator of EC (= 0 if s = 2,4, 5,6 modulo 8;
determined up to sign if s = 3, 7 modulo 8 where E¢ = Z).

The generator p, (= p}) e EY can be given by a real s-representation
of degree 8 which we can use as generator o,e E9. The ring homo-
morphism @: E¢ - EY induced by the embedding O — U, ®(c,) = p, is
thus an isomorphism E9 = EY. In E¢ the degree of c,0,€e E, 5 is
16d? = d?, . Hence o0, is irreducible, i.e, = + o,, for all 5. In parti-
cular we can choose 6,5 = 6%, 6,3 = 63,..,0g,_; = G&.

PROPOSITION 2.4. The isomorphism E?2 = E% ¢ can be given by the
product with o, e E9.

PROPOSITION 2.5. o,€ EY generates a subring of ES which is the
polynomial ring Z[c-].

We further note that c;e E$ is mapped by ® to 2p;e EY. From
O(c3) = 4p% = 4p, = ®(4o,) we infer that 6% = 45,. As for o, e EY,
it is of degree 1 and order 2, and c}eE{ is of degree 2 and order 2,
ie,o0d = o,. Of course 3 = 0.

In summary:

THEOREM 2.6. E$ is the commutative ring, graded by s +
E9, generated by o©,,G3,0, with the only relations 26, = 0, G

1 for
0 =0,
c3 = 40,.

3. THE HOMOTOPY GROUPS OF U AND O

3.1. We will deal explicitly with the unitary case. The orthogonal case
can be treated in almost exactly the same way; any additional arguments
will be mentioned wherever necessary.

In the Introduction 0.1 we associated with a set of s unitary n x n
-HR-matrices, i.e., with an e-representation of G,, a map f:S° — U of the
s-sphere S* < R**! into the infinite unitary group U via U(n). Since con-
jugation is homotopic to the identity, equivalent representations yield homo-
topic maps f (in the orthogonal case, we have to observe that conjugation
can be made with a matrix from the identity component). The map
¢: DY — r (U) thus obtained is a homomorphism; indeed, homotopy group
addition of f and f’ in m,(U(n)) can be replaced by multiplication in
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