5. Linearization

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 35 (1989)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 25.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

5. LINEARIZATION

5.1. The groups E_s^U can be viewed, through the homomorphism $\phi: E_s^U \to \pi_s(U)$ in 3.1, as "linear homotopy groups" of U. This means that we consider maps of S^s into U via some U(n) which are linear in the coordinates $x_0, x_1, ..., x_s$ of $\mathbf{R}^{s+1} \supset S^s$; and linear nullhomotopies, i.e., extensions to $S^{s+1} \to U(n)$ linear in $x_0, x_1, ..., x_{s+1}$. It is an immediate corollary of Theorem B that these linear homotopy groups $\pi_s^{\text{lin}}(U)$ are isomorphic to the $\pi_s(U)$ by the obvious imbedding $\pi_s^{\text{lin}}(U) \to \pi_s(U)$. In other words:

Any map $S^s \to U$ is homotopic to a linear map, and if a linear map $S^s \to U$ is nullhomotopic then it admits a linear nullhomotopy.

Similar statements hold, of course, for $\pi_s(O)$ and $\pi_s(Sp)$.

- 5.2.If these linearization phenomena could be established directly (by some approximation procedure) one would obtain a very transparent proof of the Bott periodicity theorems for $\pi_s(U)$, $\pi_s(O)$, and $\pi_s(Sp)$, in the sense that they would be reduced to the algebraic computation of E_s^U , E_s^O , and E_s^{Sp} as carried out here.
- 5.3. Linear maps $S^s \to U$ via U(n), etc., are given explicitly in terms of HR-matrices; thus the coefficients involve $0, \pm 1, \pm i$ only. Such maps have a meaning over very general fields instead of **R** and **C**, and one should compare the corresponding linear homotopy groups with homotopy groups defined by means of algebraic maps.

REFERENCES

- [E] ECKMANN, B. Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratischer Formen. Comment. Math. Helv. 15 (1942/43), 358-366.
- [H] HURWITZ, A. Über die Komposition der quadratischen Formen. Math. Ann. 88 (1923), 1-25.
- [K] KAROUBI, M. K-Theory. Springer-Verlag, Berlin-Heidelberg-New York 1978.
- [LS] Lam, T. Y. and Tara Smith. On the Clifford-Littlewood-Eckmann groups: A new look at periodicity mod 8. Preprint Berkeley 1988.
- [R] RADON, J. Lineare Scharen orthogonaler Matrizen. Abh. Math. Sem. Hamburg (1922), 1-14.

(Reçu le 15 décembre 1988)

Beno Eckmann

Mathematik ETH-Zentrum CH-8092 Zürich