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THE HADAMARD-CARTAN THEOREM
IN LOCALLY CONVEX METRIC SPACES

by Stephanie B. ALEXANDER and Richard L. BISHOP

1. INTRODUCTION

M. Gromov has stated the following theorem, which generalizes the
classical Hadamard-Cartan theorem from Riemannian manifolds of non-
positive sectional curvature to a much richer class of metric spaces in which
sectional curvature need not be defined [Gvl, Gv2]:

THEOREM 1 [Gromov]. 4 simply connected, complete, locally convex
geodesic space is globally convex, hence any two points are joined by a unique
geodesic.

Our interest in Gromov’s theorem arose from the wish to apply it to
Riemannian manifolds with boundary (see [ABB]). This note gives a proof of
the theorem and relates it to work of A. D. Alexandrov, H. Busemann and
S. Cohn-Vossen. In this adaptation of the classical proof of the Hadamard-
Cartan theorem to the setting of locally convex geodesic spaces, there are two
points that require additional attention: finding an appropriate definition of
the exponential map, and showing that it is locally surjective. Additionally,
for spaces of curvature bounded above in Alexandrov’s sense by KX>0, we
show local surjectivity out to length n/)/K (Theorem 3); since local injectivity
is a consequence of Alexandrov’s development method, this fully generalizes
the classical estimate on conjugate distance. Finally, we extend the Hadamard-
Cartan theorem to locally compact geodesic spaces without conjugate points
(Theorem 6). We have subsequently learned that our proof of Theorem 1
parallels a sketch proposed by Gromov in oral lectures; we hope that an exposi-
tion of these ideas will be useful.

The class of locally convex geodesic spaces includes, for instance, two-
dimensional polyhedral surfaces whose simplices are isometric to simplices in
a space of constant nonpositive curvature and for which the total angle at each
vertex not on the boundary is at least 21 ([A2]; also see [Gv2, section 4.2] and
[Ba] for the n-dimensional analogue). Orbifolds modeled on quotients of non-
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positively curved spaces and ramified coverings of nonpositively curved spaces
also offer many examples. All these are discussed in Gromov’s Hyperbolic
Groups [Gv2], which contains a far-reaching discussion of various types of
hyperbolicity (also see [GLP, chapter 1]). Complete Riemannian manifolds
with boundary satisfying appropriate interior and boundary curvature condi-
tions are also examples (see [Gv1] and [ABB]). Note that the examples men-
tioned here allow bifurcation of geodesics; that is, a maximal extension of a
geodesic need not be unique.

The earliest generalization of the Hadamard-Cartan theorem to nonriemannian
locally convex spaces seems to be due to Busemann [Bul], in the context of
G-spaces (see Remark 2 below). The versions due to Busemann [Bul, Bu2] and
Rinow [R] concern spaces for which geodesics do not bifurcate and are
infinitely extendible, and which are locally compact and satisfy domain
invariance. Note that all of these hypotheses have been eliminated in
Theorem 1. For a simple example of a complete, locally convex geodesic space
satisfying none of them, take the metric completion of the simply connected
covering of the punctured Euclidean or hyperbolic closed disk. In particular,
where Busemann and Rinow use the unique and infinite extendibility of
geodesics to define the exponential map on the product of [0, o) with a metric
sphere around m, here it is defined as the endpoint map on the space of
geodesics starting at m, in the uniform metric. Where they use invariance of
domain to show that the exponential map is locally surjective, here this is

shown to follow from local convexity alone.
Geodesic spaces were first considered by Alexandrov [Al], who defined

upper curvature bounds for such spaces and gave a development method for
transforming local curvature bounds into global ones under certain conditions
(see below). We shall use the following terminology. An interior metric space
M is one in which the distance between any two points is the infimum of the
lengths of curves joining them (where curvelength is defined as usual); the
terms inner and tight have also been used. M is a geodesic space if in addition
it contains a shortest curve between any two points [Gv2]. (Length space has
been used with both meanings.) A complete interior space is geodesic if it is
locally compact [Bu2, p. 24], but might not be otherwise. For instance, an
ellipsoid in Hilbert space, the lengths of whose axes are strictly decreasing and
bounded above zero, is complete in the interior metric and yet contains
infinitely many pairs of points which cannot be joined by shortest curves (see
[Gn]). A sequence of intervals of length 1 + 1/n with their left and right end-
points respectively identified is complete and locally convex in the interior
metric and contains a pair of points not joined by a shortest curve.
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A geodesic will always be a locally distance-realizing curve parametrized
proportionally to arclength by [0, 1]. A geodesic space is locally convex if every
point has a neighborhood such that the distance d(a(t), B(#)) is convex for any
two minimizing geodesics o and B in the neighborhood. (Of course, for
Riemannian manifolds without boundary this is equivalent to nonpositive
sectional curvature; see [BGS].) If m,, denotes the midpoint of a geodesic
from p to g, then it is equivalent to say that M is covered by neighborhoods
U such that the relation

2d(my,, my) < d(q,r)

holds for any three points p, ¢ and r in U and any geodesics in U joining them
(such geodesics are unique).

We are very grateful to the referee for examining the paper carefully and
suggesting a number of technical improvements.

We also thank the referee for informing us of the chapter [Ba] by
W. Ballmann that is to appear in Sur les Groupes Hyperboliques d’apres
Gromov (Ghys, de la Harpe, eds.), and its author for promptly sending us a
preprint. In [Ba], the Hadamard-Cartan theorem is proved using the Birkhoff
curve-shortening technique; this depends on local compactness, which we
avoid by exploiting local convexity. Another distinction is that the notions of
exponential map and conjugate point are not introduced in [Ba]. The
Hadamard-Cartan theorem is applied in [Ba] to obtain a criterion for the
hyperbolicity of certain simply connected polyhedra.

2. CONJUGATE POINTS

In a given geodesic space, let G, be the space of geodesics starting at m,
carrying the uniform metric d. Say the point m has no conjugate points if the
endpoint map on G,, maps some neighborhood of every y homeomorphically
onto a neighborhood of the endpoint of y. (In Riemannian manifolds without
boundary, this definition is equivalent to the usual one.)

THEOREM 2. A locally convex, complete geodesic space has no
conjugate points.

Here it is straightforward that the endpoint map is a homeomorphism, and
in fact an isometry, from some open neighborhood of every y onto its image.
The question is whether it is surjective; that is, whether locally there always
exist geodesics from s that vary continuously with their righthand endpoints.
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To show this, especially in the absence of local compactness, seems to require
a little care.

Proof. Fix a geodesic y. The maximum radius of an open ball, such that
the distance function is convex between minimizing geodesics with endpoints
in the ball, is positive and varies continuously with the center of the ball. Thus
the infimum, r, of these radii over all the points of vy is positive. Suppose o,
and a, are geodesics whose distances from vy, namely

d((l,', Y) = maXd(ai(t)a Y(t)) ’

are less than r. Since convexity is a local property, the distance function
d(o,(2), a,(t)) is convex, and hence the larger of its two endpoint values is
d(al,azﬁ).

Let P(L) be the statement:

For every subsegment vy of y of length at most L, any two points p and
g whose respective distances from the endpoints of y are less than r/2 are
joined by a geodesic a = a(p,q) whose distance from vy is less than r/2.

Note that a(p, g) is necessarily unique, and the distance function between any
two such geodesics is convex.

Clearly P(r) holds. We claim that P(3L/2) holds if P(L) does. Indeed, sup-
pose p and g are the left and right endpoints of a subsegment of y of length
at most 3L/2, and let p, and g, trisect its length, moving from left to right.
Suppose p and g lie within distance R < r/2 of the endpoints p and gq,
respectively. Applying P(L) to a(p, qy) and a(py, q) repeatedly, we define p;
and g¢; inductively for i = 1 by letting p; be the midpoint of a(p, g.;) and g;
be the midpoint of a(p.;, q). Convexity ensures that d(p..;,p;) and d(q., q;)
do not exceed R/2/ and hence do not exceed r/2+!. Therefore the sequences
{p;} and {gq;} are Cauchy, converging respectively to points p, and ¢
within distance R of p, and g,. Since the distance function between a(p, g;)
and o(p, ¢«) is convex, {o(p, q;)} converges uniformly to a( D, 4s). Similarly,
{a(p;,q)} converges to a(p«,q). Each of these limit geodesics contains a
reparametrization of o.(pe,J«), SO they combine to give the desired geodesic
joining p and gq.

We conclude, in particular, that the endpoint map sends the ball of radius
r/2 about a geodesic y in G,, isometrically onto the ball of the same radius
about the endpoint of y. [

Now we indicate how the above argument on conjugate points fits into the
Alexandrov theory of spaces of curvature bounded above. Following [ABN],
we shall say that a geodesic space has curvature bounded above by K if every
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point has a ‘““model neighborhood”’ in which any two points are joined by a
minimizing geodesic in the neighborhood, and any minimizing geodesi_c
triangle in the neighborhood has perimeter less than 2n/)/K
(if K > 0), and angle sum at most equal to the sum for a triangle having the
same sidelengths in the standard surface Sy of constant curvature K.
Alexandrov proved that then each angle individually is at most equal to its
comparison angle in Sk [A1]. Here the angle at a vertex of a given minimizing
geodesic triangle is defined to be the lim sup of the corresponding comparison
angles in Sk over all triangles obtained by approaching the vertex along its
adjacent sides. Curvature bounded above by 0 is a stronger condition in general
than local convexity [Al]; for instance, most Minkowski spaces satisfy the
latter and not the former.

The Alexandrov development method then shows that minimizing
geodesics in a model neighborhood are unique and vary continuously with their
endpoints ([A2], p. 51-56). The main step in this method is the proof that if
one forms a triangle in a model neighborhood by moving distances x and y
along two minimizing geodesics from m, then the angle in the model triangle
in Sk at the point corresponding to m is nondecreasing in x and y. It follows
from this by a hinge argument that the distance between any two points of
a triangle in a model neighborhood is no greater than the distance in Sk
between the two corresponding points of the model triangle. Alexandrov
further proves that in any region in which minimizing geodesics are unique and
vary continuously with their endpoints, the angle comparison property for
minimizing geodesic triangles holds globally as well as locally ([A2], p. 56-58).
Alexandrov’s development method may also be applied to an arbitrary, not
necessarily minimizing, geodesic y in G, (of length less than mn/}/K
if K> 0), and any two geodesics o; and o, sufficiently close in G,, to y. We
outline the argument.

We may assume that o, and o, lie within distance r/2 of vy, where r is a
uniform model radius for vy, and that all geodesic triangles
A(t) = mo,(t)o,(f) consisting of subsegments of ¢, and 6, and the minimiz-
ing geodesic between their righthand endpoints have perimeters less than
2n/)/'K. For all ¢ in some interval [0, ], the sidelengths of A(f) satisfy the
triangle inequalities, A(?) and its model triangle in Sk satisfy the angle com-
parison property, and the angle 8(¢) at the point corresponding to m in the
model triangle is nondecreasing in #. We claim that these properties extend to
min{f, + €, 1}, for uniform &, whenever they extend to #, < 1; and hence they
extend to 7y = 1. To see this, choose € so that the restrictions of c; and o, to
[%, fo + €] lie in a model neighborhood of y(z,) and are minimizing. Construct
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a pentagon in Sy in the obvious way out of three model triangles cor-
responding to A(ty), Ac,(f) o, (u)o,(fy) and Ac,(ty)o,(u)o, (1) respectively.
By the angle comparison property, the interior angles of this pentagon at the
points corresponding to 6,(%) and 6,(%) are at least m. Thus this pentagon
determines a surface with boundary in Sx whose boundary is itself a
minimizing geodesic triangle in the interior metric. Therefore the triangle
inequalities hold for A(u). By straightening the two concave sides of the pen-
tagon one increases the three convex angles and hence obtains a model triangle
for A(u) that satisfies the angle comparison property. The same argument
applied to A(u) and A(v) for f, <u <v <1, + ¢ shows that 6(x) < 8(v), and
hence verifies the above claim. It follows by a hinge argument that A(1)
satisfies the following uniform distance comparison property: for 0 <t < 1,
the distance between o,(¢) and o6,(¢) is no greater than the distance in Sk
between the corresponding points of the model triangle for A(1). In particular,
the endpoint map on G,, is injective on a neighborhood of 7.

One may then ask whether the endpoint map is surjective, sending a
neighborhood of y onto a neighborhood of its endpoint. To answer this
question fully, we indicate how to extend the proof of Theorem 2 to the case
K> 0:

THEOREM 3. A complete geodesic space of curvature bounded above by
K >0 has no conjugate points along geodesics of length less than m/)/K.

It is easy to give examples showing that local injectivity of the endpoint
map may not imply local surjectivity beyond length n/|/K. (However, in
Riemannian manifolds without boundary, local injectivity of the exponential
map implies regularity and hence local surjectivity [W].) For instance, a closed
unit hemisphere in its interior metric has curvature bounded above by 1; here
the nature of G,, changes abruptly at length m. If vy lies on the boundary
circle and has length m + ¢, then a small neighborhood of y is mapped
homeomorphically onto a circular segment, not onto a neighborhood of the
endpoint.

Proof. Fix a geodesic y of length less than n/]/K. Let r > 0 be a uniform
radius for model balls around points of y. Let P(L) be the statement:

Given ¢ in (0, r), there is & > 0 such that for every subsegment y of y of
length at most L, any two points p and g whosg respective distances from
the endpoints of y are less than & are joined by a geodesic a = a(p, q)
whose distance from v is less than € and whose length is at most L + .
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If p = min{r/2,n/4)/K}, then P(p) holds, by taking & = min{e/2, p/2}.
This estimate uses the the fact that the distances between corresponding points
of two sides of a triangle in Sk never exceed the endpoint value if both sides
have length less than n/2)/K. It remains to be shown that if P(L) holds
and L < 2n/3)/K, then P(3L/2) holds.

Choose & < min{r/2, n/61/]_<}. This choice of & ensures that any two
geodesics issuing from the same point and having length at most L + € and
distance at most € from a subsegment of vy will satisfy the uniform distance
comparison property. In particular, the geodesics a(p, g) in P(L) are unique.
Now choose €’ < min{2n/3] K — L, 2¢/3}. Denote by &8’ the value given by
applying P(L) to vy, with " as the desired distance from subsegments of y. Set
L'=L+¢ and A =sin(/KL'/2)/sin(}'KL") (then 1/2<A<1). It is an
exercise in spherical trigonometry to show that if B, and P, are two sides of
a minimizing triangle in Sx and both have length less than L’, then

(1) d(B:(1/2), B2(1/2)) < Ad(Bi(1), B2(1)) .

Let 8 = (1 —A)8"/A (then also & < &").

Suppose that y is a subsegment of y of length L < 3L/2, with endpoints
p and g, and let p and g be points within distance 8 of these endpoints. We
now follow the construction of Theorem 2. Subdivide y into thirds by points
Do, qo and take, recursively, p; as the midpoint of a(p, ¢;_,) and ¢; as the
midpoint of a(p;,_,,q). To verify that this recursive definition is possible,
apply P(L) repeatedly to the subsegments a(p, qo) and o(py,q) of vy, and
note that inductively d(p;,_,,p;) and d(q;_,,q;) are less than A‘S by the
uniform distance comparison property and (1), and hence d(p,,p;) and
d(qo,q;) are less than A8/(1 —AX) = §'. In particular, {p;} and {g;} are
Cauchy, and converge to p. and ¢. respectively. By the uniform distance
comparison property, {a(p,q;)} converges uniformly to a(p,gd-) and
{o(pi,q)} to a(pe,q). These two limit geodesics overlap since 0(Pew, o) i8S
unique, hence combine to give a geodesic from p to ¢ that has distance at most
¢’ <& from y and length at most L + 3¢’/2< L +¢. []

3. PROOF OF THEOREM 1

Again consider a locally convex, complete geodesic space M, and let G,,
be the space of geodesics starting at m carrying the uniform metric d. It follows
from local convexity that a Cauchy sequence in G,, converges to a geodesic
and hence d is complete. Furthermore, M has neighborhoods of bipoint uni-
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queness, any two points of which are joined by a unique minimizing geodesic
in M, varying continuously with its endpoints. Note that neighborhoods of
bipoint uniqueness guarantee that each point is the center of a contractible
metric ball, since a minimizing geodesic from the center of a metric ball lies
in the ball if its righthand endpoint does. Thus any interior metric space with
neighborhoods of bipoint uniqueness is pathconnected, locally pathconnected
and locally simply connected, and covering space theory applies. We now give
a proof of Theorem 1, restated as follows:

THEOREM 4. In a locally convex, complete geodesic space, the endpoint
map on the space of geodesics from any given point is the universal covering
map. Thus each homotopy class of curves between two given points contains
exactly one geodesic.

If M is simply connected, it follows that the members of G,, are uniquely
determined by and vary continuously with their righthand endpoints. (Thus
M 1is contractible.) Furthermore, the distance function between any two
geodesics in M is convex, as claimed by Theorem 1. Indeed, for this it suffices
to verify the midpoint convexity property for two sides of an arbitrary geodesic
triangle (see [Bu2], p. 237); by continuity, one can subdivide into arbitrarily
thin triangles, for which convexity is obvious.

We use a covering lemma for interior (rather than geodesic) spaces. It will
be applied to the case in which M is G,,, and is not known to contain
minimizing geodesics between pairs of its members. By saying ¢ is a local
isometry of M onto M we mean that every point in M has a neighborhood
mapped isometrically onto a neighborhood of the image point.

LEMMA 1. Let M and M be complete interior metric spaces. If M
has neighborhoods of bipoint uniqueness, then any local isometry ¢ of M
onto M is a covering map.

Proof. Choose the open metric ball B(p,€) to be a neighborhood of
bipoint uniqueness in M. Since M is not necessarily geodesic, we argue as
follows to show that the restriction of ¢ to B(p,¢€) is injective, for p in the
preimage of p. Since M is interior, any two points of B(p,€) may be joined
to p by curves a and 6 which map [0, 1] into B(p, €). Their image curves, o
and B, lie in B(p, €), since a local isometry preserves lengths and hence does
not increase distances. There is a continuous variation of minimizing geodesics
v, from a(?) to B(¢), 0 <¢< 1. Since a local isometry between complete
spaces has the unique pathlifting property, one may lift o | [0, ] followed by
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v,, for each ¢, to p. This gives a continuous curve starting at p and lying over
B, hence coinciding with B. If a and B have the same righthand endpoint,
then vy, is constant, hence & and P also have the same righthand endpoint.

From here it is straightforward to check that the preimage of B(p, €) has
the desired form. For instance, the fact that B(p;,€) and B(p,, ¢) are disjoint
for distinct p,, p, in the preimage of p has almost the same proof as
above. [

Proof of Theorem 4. Note that G, is contractible, hence connected and
simply connected. By Lemma 1, it suffices to define a complete interior metric
d* on G,,, with respect to which the endpoint map is a local isometry and
whose topology agrees with that of d. (In general d is not interior; for example,
take M to be a Euclidean circle.) Let d* be the interior metric induced by d;
that is, let d*(y, o) be the infimum of lengths of curves in (G,,,d) from vy to
c. Since these lengths are greater than or equal to d(y, 6), we have d < d*. By
Theorem 2, the endpoint map is a local isometry from (G,,,d) onto M. It
follows by the definition of d* that every element of G,, has a neighborhood
on which d and d* coincide. It only remains to verify that d* is complete; but
since d 1s complete and d < d*, any d*-Cauchy sequence converges in d and
hence in d*. [

4. COHN-VOSSEN’S THEOREM
AND SPACES WITHOUT CONJUGATE POINTS

We have seen that in complete locally convex spaces, the endpoint map on
(G, d), which we may denote by exp,,, is a covering map. Such an argument
will be more difficult to make if we merely assume that our spaces have no
conjugate points; in fact, we have only been successful under the additional
assumption of local compactness. Recall that the Hopf-Rinow theorem is used
to prove the corresponding theorem in Riemannian geometry. To follow this
lead would require a very general version of the Hopf-Rinow theorem, and
one which does not hinge on the infinite extendibility of geodesics. It turns
out that, in locally compact spaces, one may substitute for the notion of
infinite extendibility, that of extendibility to a closed interval. This version is
essentially due to Cohn-Vossen [C-V]; also see [Bu3, p. 4]. (In these references,

condition (1) below is not discussed explicitly, but the proof suffices for the
theorem as stated here.)
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THEOREM 5 [Cohn-Vossen]. In a locally compact, interior metric space
M, the following are equivalent: (i) every halfopen minimizing geodesic from
a base point extends to a closed interval; (ii) every halfopen geodesic extends
to a closed interval; (iii) bounded closed subsets are compact; (iv) M is com-
plete. Any of these implies: (v) M is a geodesic space (i.e., any two points may
be joined by a shortest curve).

Now the standard proof of the Hadamard-Cartan theorem may be adapted
to give:

THEOREM 6. In a locally compact, complete geodesic space without
conjugate points, each homotopy class of curves between two given points
contains exactly one geodesic.

To do this, we modify the covering lemma. Say that a space M has
neighborhoods of radial uniqueness if every point m is the center of a metric
ball B, each of whose points can be joined to m by a unique minimizing
geodesic (necessarily in B) and by no other geodesic in B. The proof of the
following is entirely standard.

LEMMA 2. Let M and M be complete geodesic spaces. If M has
neighborhoods of radial uniqueness, then any local isometry of M onto M
IS a covering map.

Proof of Theorem 6. Since M has no conjugate points, a sufficiently small
metric ball B around m is a neighborhood of radial uniqueness. This fact and
local compactness imply that the minimizing geodesic to m in B varies con-
tinuously with its endpoint. Thus B is contractible and covering space theory
applies to M. Now it suffices to show that the endpoint map exp, 1s a
covering map.

By assumption, exp,, is a local homeomorphism from (G,,,d) onto M.
Now define a new metric d* on G, by requiring that exp,, be a local isometry
of (G,,,d*) onto M and (G,,, d*) be interior. (This will agree with the metric
d* of the previous section if M is locally convex, but in general they will be
different.) Thus we now take d*(y, 6) to be the infimum of lengths of curves
in M that are the endpoint curves of curves in (G,,d) from y to c. By
Lemma 2, it only remains to show that (G,,, d*) is a complete geodesic space.
Note that (G,,,d*) is locally compact, being locally homeomorphic to M.
Choose the constant geodesic at m as a basepoint in G,,. A geodesic starting
at m in (G,,, d*) projects under exp,, to a geodesic starting at m in M. Since
the latter can be extended to a closed interval by the completeness of M, so
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can the former. By Theorem 5, since (G,,,d*) satisfies (i), it satisfies (iv)

and (v). U

Remark 1. 1t is easily seen that Cohn-Vossen’s theorem does not extend
to spaces that are not locally compact. Indeed, an ellipsoid in Hilbert space,
the lengths of whose axes are strictly decreasing and bounded above zero,
satisfies all but (iii) and (v). The graph of z = cosxcos(l/y) for
—n/2<x<n/2and y > 0, with the straight line segment from (— /2,0, 0)
to (n/2,0,0) adjoined, satisfies all but (iii).

Remark 2. A G-space is a locally compact, complete geodesic space which
has neighborhoods of bipoint uniqueness, and in which geodesics are infinitely
and uniquely extendible. In [Bu2], Busemann studies the Hadamard-Cartan
theorem in the setting of G-spaces satisfying a condition that he shows is
equivalent to nonpositive curvature in Riemannian manifolds but weaker in
G-spaces, and which for brevity we call /ocal peaklessness [Bu2, p. 269]. This
means that the space is covered by neighborhoods U such that d(y(¢),c) is a
peakless function for any two shortest curves y and o in U. Here, a peakless
function is one whose values on any interval do not exceed the larger of the
two endpoint values, with equality occurring only if the function is constant
on the interval. In G-spaces, local peaklessness is equivalent to having convex
capsules [Bu2, p. 244]. Thus Busemann’s theorem is: A simply connected G-
space with convex capsules and domain invariance contains a unique geodesic
joining any two of its points. Our proof of Theorem 2 does not carry over
when local convexity is replaced by local peaklessness. However, we have
found a different proof that Theorem 2 holds when local convexity is replaced
by local compactness and local peaklessness. This fact and Theorem 6 imply,
in particular, that the theorem of Busemann just stated holds without the
hypothesis of domain invariance.
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