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The FKT model has a number of intriguing features. It calculates a

determinant of a generalized Alexander matrix. It is the low temperature limit

of a generalized Potts model [57].

Is the FKT model a reformulation of the skein model for the Conway

polynomial? There are a number of ways to try to generalize the FKT model

to obtain a model of the Homfly polynomial. An answer to this question would

shed light on the relationship of the FKT model and the Homfly polynomial.

(And consequently on the relationship of the Homfly polynomial and the

fundamental group of the link.)

VII. Yang-Baxter Models

I now turn to state models for specializations of the Homfly and Kauffman

polynomials that arise from solutions to the Yang-Baxter Equation [10]. These

models were devised by Vaughan Jones (Homfly) ([40]) and Volodja Turaev

(Kauffman) ([93]). (See also the series of papers ([1], [2], [3], [4], [5], [64])

by Akutsu, Wadati and collaborators.) The reformulation of these models as

given here is due to the author (compare [55], [58]).

The Yang-Baxter Equation arises in the study of two-dimensional statistical
mechanics models [10] and also in the study of 1 + 1 (1 space dimension,
1 time dimension) quantum field theory ([25], [100]). In the latter case, the

motivation and relationship with knot theory is easiest to explain.
Regard a crossing in a universe (shadow of a link diagram) as a

diagram for the interaction of two particles. Label the in-going and out-going
lines of an oriented crossing with the "spins" of these particles.
(Mathematically, spin is a generic term for a label chosen from an ordered index
set J. In applications it may denote the spin of a particle, or it may
denote charge or some other intrinsic quantity.) The angle between the

crossing segments can be regarded as an indicator of their relative momentum
(rapidity). For each assignment of spins and each angle 0 there will be a
matrix element that, in the physical context, measures the amplitude (complex
probability amplitude) for the process with these spins and rapidity.

The S matrix, S §(6), is said to be factorized if it satisfies the equations
shown in Figure 8. This matrix equation is the Yang-Baxter Equation.
Physically, it means that amplitudes for multi-particle interactions can be
calculated from the two-particle scattering amplitude.
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Figure 8

As is evident from Figure 8, the Yang-Baxter Equation expresses an
invariance related to the type III (triangle) Reidemeister move in knot theory.
Figure 9 illustrates the beginning of this correspondence. In this Figure 1 have

matched the interaction picture for the S-matrix with a crossing of positive
type, and have matched a related matrix, <S(0), with a crossing of negative

type. Here we assume that the matrix product

sff(e)s&-e) s? 85

(sum on i and j)
is the identity matrix (indicated with Kronecker deltas above). In this form,
both crossing and reversed crossing measure the same underlying momentum

— corresponding to the (counterclockwise) measure of the angle between the

crossing lines.
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Switching the crossing corresponds to this step in inverting the 5-matrix

(that must be combined with a reverse momentum difference to actually

obtain the inverse). In the case of a special S-matrix (see below and Figure 11)

we will accomplish the momentum change with extra interactions (angles in

the diagram) so that a crossing and its reverse can cancel.

It is a curious and deep fact that there is this correspondence between

a topological move for weaves in three-dimensional space and the facto-

rizability condition for the S-matrix.
In fact, by assuming that the solution to the Yang-Baxter equation

has a special form, one can produce state models for link invariants!
In the first version discussed here I shall use piecewise linear (pi) link
diagrams. In a pi diagram it will be assumes that each segment of a

crossing forms a straight line at the crossing. Along with crossings there

are isolated vertices

The angle at a vertex is measured as the angle between the incoming
segment and the outgoing segment with direction as shown in Figure 10.

5(0) 5( —9) I

Figure 9

Figure 10

One may think of the isolated vertices as interactions with an external
field that causes the trajectory of the particle to change direction.

It is assumed that spinis preserved at all sites of interaction. Thus,
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at a 4-vertex we have a + b c + d, and at a 2-vertex we have that
the incoming and outgoing spins are identical.

We shall assume that 5(9) has the following special form:

where X is an (as yet) unspecified variable, and R is an invertible matrix,
with no 9-dependence. We also assume that a + b c + d whenever

Rfd / 0. Call such an 5 a special S-matrix.
Note that R 5(0) satisfies the Yang-Baxter equation without the angular

parameter. Let R denote the inverse matrix to R, and let S be defined

so that 5(0) R:

Remark. A little Euclidean Geometry shows that the oriented type II
move works perfectly with respect to this definition when 5 is associated

with a crossing of negative type. See Figure 11.

Define the following vertex weights for piecewise-linear link diagrams as

indicated in Figure 12. In this Figure the local state configuration is shown

in the right-hand of the bracket, and tfye crossing type in the left-hand half.

5^(0) - RfdX%{d~a)lln

5^(0) RacbdXe{d-a)l2n.

a b

a + ß + y 0

s + |I + T| 0

9 + (j) |i - ß

a + b c + d

c + d — e + /
(spin conservation)

=> aoL + bs 4- (d — aß
+ |ic + fid + (f c)(\)

+ je + r\f 0
\

X => product of vertex
weights for diagram
on left is

=> invariance under pi
type Il move
(by RR I).

we

Figure 11
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<X\$b>= R"%m~a),2n

<x Öy>= R^m
<>$,*>= x°e,2n

Vertex Weights

Figure 12

For this Yang-Baxter model, a state of the oriented universe U underlying

a given link diagram K is any assignment of spins (from the index

set J> to the edges of U (modulo conservation of spin).
Given a diagram K and a state a, let < K | a > denote the product

of these vertex weights. Let <K> denote the sum of such products taken
over all (spin-conserving) states.

Lemma 7.1. Let S(0) he a special factorized S-matrix. Let the state
summation

<K> =YJ<K\a>
a

be defined on oriented link diagrams K as explained above. Then, if
R S(0) satisfies the additional condition

(*) X 5/ Ôce

i, je.ß

o S( — 7i) S(n) I where

cab aca oab obd.^ cd à db ' ^ cd à ac

<^> Cross Channel Inversion

o Inversion under Il-move with reverse orientation

then <K> is an invariant of regular isotopy.

(See [40] or [58] for a proof of this lemma.)

Remark. There is a corresponding state model and lemma for unoriented
links.

The lemma shows that any angle-free, invertible solution R of the
Yang-Baxter Equation gives rise to a regular isotopy invariant of knots
and links (by choosing X to satisfy (*)).
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We now exhibit two such solutions in a form that emphasizes their
formal similarity to the skein models. In these models the angle (rapidity)
terms can all be relegated to counting the number of circuits in a state (with
multiplicity). In the Homfly case the model takes the form

<x> 2 CO +^<x> + <x>

<X)=-^<X>+W'-1<X) + <X)
(z w - w~1

Note the similarity of the formalism with that for the skein model.

Here however, I adopt the convention that the dotted segment has a smaller

spin than the un-dotted segment. The local state without dots has equal spins

on its lines. Spins must be different for crossing lines. The vertex weights
of the expansion correspond to a particular solution of the Yang-Baxter
Equation.

In this model a state a is a splitting of the universe (i.e. splice a subset

of its crossings) and a labelling of the circuits by spins. (The circuits are

not allowed to cross themselves.) The value of a state is

where || a || £ label (C) • rot (C)
circuits
C in a

with

rot (O) + 1, rot (Ô) - 1

e.g.

er =>|| a || - 5( —1) — 3(—1) -2.

and label (C) is the spin assigned to the (edges of) the circuit C. In this

model the state value Xi|cr|1 is a summary of all the angle contributions in
the pi formulation. The weights from the set W {z, —z, w, w _1, 0, 1} are

the values taken by the angle-independent part R of the S-matrix. This model
is expressed for arbitrary link diagrams in the form

<K> =YJ<K\a> XM
CT

where < K \ a > denotes the product of vertex weights from the set W

arising from the expansion given above.
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A particularly nice model occurs for index set in the form

{_ _ n + 2,n - 2, n) with X w

This gives a series of one-variable specializations of the Homfly polynomial.

(See [40], [58], [93].) Isthere a Yang-Baxter model for the Homfly

polynomial This is an open question.

A similar approach works for the Dubrovnik form of the Kauffman

polynomial. See [58], [93]. The expansion formula has the appearance.

[X] z [X]- z [M] + w [X] "'M +" M

(It is understood that reversing the orientation of a line is accompanied

by the negation of its spin.) Once again, the dot on a line means that

it has smaller spin.

VIII. Applications and questions

This section is devoted to a few applications of the skein and state

models and related questions.

1. Let VK denote the Conway polynomial. The skein model is embodied

in the formula of section 6 :

vx= z (-ir(Lv<°
L, |L| 1

from which we see easily that

max deg VK ^ V — S + 1 p(K)

where V is the number of crossings in the diagram K, S is the number
of Seifert circuits (the set of circuits obtained by splicing all crossings
of K). On knows that p(K) rank (H^Fj) where F is the Seifert spanning
surface [42] corresponding to the diagram K. If K is an alternating link
then max deg p(K) [76]. This is generalized to the class of alternative
links in [42], using the FKT model. Is there a proof using the skein model? l)

In the case where all the crossings are of positive type, we see from
the skein model that all terms of VK are positive, and it is then easy
to see that the highest degree term is of degree p(?T)-

') Note added in proof: A proof using the skein model for the theorem on alternative
links has been found by John Mathias — University of Maryland, May 1989.
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