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GAUSS SUMS AND THEIR PRIME FACTORIZATION

by Jan Brinkhuis

Introduction

The prime factorization of Gauss sums associated to a finite field of

p elements, with p a prime number, plays a fundamental role in the theory
of cyclotomic fields. Therefore it is desirable to have a proof which is as

simple as possible. The usual proof, as given for example by Weil in [W],
proceeds by determining the leading term of the local expansion of such a

Gauss sum in each completion above p of the appropriate cyclotomic
field. This requires some relatively delicate manipulations with binomial
coefficients. The new proof which is offered in the present paper avoids
this completely: instead we proceed by deriving the prime factorization as

a formal consequence of four basic properties of Gauss sums (they are
listed in proposition (1.2)). The resulting proof is very easy to memorize,
in fact it is probably the simplest possible one. The novel idea which
gives rise to the simplification is a general, almost trivial observation on
inertia groups, which sometimes leads to an effortless determination of
discrete valuations modulo a specific positive integer (see lemma (4.3) and the
discussion following it).

It seemed appropriate to include also an introduction to one of the
main applications of the prime factorization of Gauss sums, the annihilation
of ideal class groups by Stickelberger ideals. In our presentation of this
application, we let the annihilator ideal of a group of roots of unity play
a central role.

1. Gauss sums and some of their properties

Let Z be the ring of rational integers, Q the field of rational numbers
and_Q an algebraic closure of Q chosen once and for all. Subfields F
of Q of finite degree over Q are called algebraic number fields. For each
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algebraic number field F the integral closure of Z in F is called the ring
of algebraic integers in F. Let p be an odd prime number. We choose a

primitive p-th root of unity Çp in Q. Let Fp be the finite field of

p elements, that is, Fp Z/pZ. For each commutative ring R with unit
element, let R* be the group of invertible elements in R. Let % be a

non-trivial multiplicative character on Fp, that is, a non-trivial homomorphism
from F*, which is a cyclic group of order p — 1, to Q*. Let m be the

order of %, then m > 1 and m\p - 1, that is, m divides p - 1. We associate

to % the following number in Q, called the Gauss sum of %,

(1.1) G YxX(x

where x runs over F *. Our aim is to determine the prime factorization
of G. We start by recalling and verifying four properties of G; after that

we can forget the explicit formula (1.1) as we will only use these four
properties of G to obtain its prime factorization. Before stating them below
in proposition (1.2) we first introduce some notation.

Each action of a group F on a field F will be denoted by the

exponential notation: rY is the image of r under the action of y for
each y e r and each r e F. Whenever such an action is given we will
extend the action of F on the multiplicative group F* by Z-linearity
to an action of the group ring Zr on F* ; we will denote this action also

by the exponential notation. Thus for each element X ^F
where y runs over F and where ny e Z for all y g T, and for each r e F*,
the element rK is the element Yl (rTY in where y runs over F. For
each ne N let Q (n) be the n-th cyclotomic field, which is defined to
be the algebraic number field generated over Q by the n-th roots of

unity. For each Galois extension of fields F/E let Gal(F/F) be its Galois

group. As m | p — 1, the integers p and m are relatively prime and so

Gal(Q(pm)/Q) Gal (Q(p)/Q) x Gal(Q(m)/Q). We view the two factors of
this product as subgroups of Gal (Q(pm)/Q). In other words, we identify
Gal (Q(p)/Q) with Gal (Q(pm)/Q(m)) by letting each a e Gal (Q(p)/Q) act

trivially on the m-th roots of unity and, similarly, we identify Gal(Q(m)/Q)
with Gal (Q(pm)/Q(p)) by letting each x e Gal (Q(m)/Q) act trivially on the

p-th roots of unity. For each ne N one defines an isomorphism from

(Z/nZ)* to Gal (Q(n)/Q) by sending each i e (Z/nZ)* to the automorphism
of the field Q(n) which acts on the n-th roots of unity by raising each of
them to the power i. For each x g (Z/pZ)* we denote the corresponding
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element of Gal(Q(p)/Q) by and for each y e (Z/mZ)* we denote the

corresponding element of Gal(Q(m)/Q) by xy. If x e (Z/pZ)* and if k e Z

is a representative of x, we will sometimes write afc instead of ax; we make a

similar convention for the elements of Gal(Q(m)/Q). Now we state and

verify those properties of the number G which we will use to determine

its prime factorization.

(1.2) Proposition. The Gauss sum G as defined by (1.1) has the following

properties

(i) G e Q(pm)

(ii) G0»"3 xW f°r ali xeFp

(iii) G is an algebraic integer

(iv) G I p, that is, G divides p.

Proof (i) and (iii). These properties follow immediately from the

definition of G as a sum of roots of unity of order dividing pm.

(ii) Let xeF*. Then Gax %{y~ %xpy, where y runs over F*,
replacing y by x_1y one gets x(*)ÉvX(k~1K£> that is, %(x)G. Therefore

G°v 1 xW, as required.

(iv) We take the product of G Xvx(* anc^ ^ts comPlex conjugate
H ^ where x and y run over F*. This product equals

Xx,yX(x~13'KÎ"3'> replacing y by xy one gets

=zy[xw

where x and y run over F *. Now we let, in the inner sum of this

expression, x run over the whole of Fp instead of over F*. Then the
value of the expression does not change, as ^x(k) 0 where y runs over
F * -here we use that % is non-trivial. If we now use the following formulas

p ifu o

0 if ueFp

where v runs over Fp, then we get that the product of G and H is

equal to p and so, as H is an algebraic integer, we conclude that G

divides p, as required.
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2. The prime factorization of p in Q(pm)

The next thing to do is to recall the prime factorization of the prime
number p in the field Q{pm) and to introduce a notation for the primes of
Q(pm) above p which is convenient for bookkeeping purposes. The prime
number p ramifies completely in Q(p), in fact p ~ (Çp — 1 )p_1 where ~ denotes

equality up to a factor which is an algebraic unit. The prime number p
splits completely in Q(m), as p 1 mod m. These two facts determine by
ramification theory the prime factorization of p in Q(pm) : the prime number p
splits completely in the extension Q(m)/Q and each prime in Q(m) above p
ramifies completely in the extension Q(pm)/Q(m). This implies moreover that
for each prime D. in Q(pm) above p its residue field is ~ Fp and that the

group Gal (Q(pra)/Q(ra)), which we have identified with Gal(Q(p)/Q), is the
inertia group of D. in the extension Q(pm)/Q, that is, it consists of the

automorphisms of the field Q(pm) which leave Q fixed and which moreover
induce the trivial automorphism on the residue class field of Q (this last

property is automatically satisfied as the residue class field is ~ Fp and

so it has no non-trivial automorphisms).
Now we are going to give a more precise description of the primes in Q(pm)

above p. Let 0 be the Euler phi function defined on the natural numbers in

one of the following, equivalent, ways:

(i) 0(«) is the number of positive integers < n which are relatively prime
to n.

(ii) <|,(n) #(Z/nZ)*.
(iii) <t>(") CQ(w) : Q] •

(iv) 4>(n) is the number of isomorphisms between two cyclic groups of
order n.

For each field F and each ne N let p„(F) be the group of n-th roots
of unity in F ; this is in general a cyclic group of order dividing n. As

m I p — 1 the order of |im(Fp) is precisely m. The set of primes q in Q(m)

above p and the set of isomorphisms \|/ from pm(Q) to pm(Fp) have both
0(m) elements. In fact there is a canonical bijection between these two sets:

let q correspond to \|/ iff Ç \|/(Q mod q for all Ç g pm(Q). Among those

isomorphisms \J/ we will now single one out. Let z be a generator of

F*, then %(z) is a generator of pm(Q) and zip~1)/m is a generator of pw(Fp).

Therefore there is a unique isomorphism from pm(Q) to pm(Fp) which sends

%(z) to z(p~1)lm. It clearly sends %(x) to xip~1)/m for all xe F*. This is the

isomorphism which we single out. Let p be the prime in Q(m) above p
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corresponding to this isomorphism and let ^ be the prime in Qipm)

above p, so ^3P_1 p, if we identify the prime ideal p of Q(m) with its

extension to a fractional ideal of Qipm). Thus we have the following congruence

(2.1) %(x) mod ^3 for all x e F*

Let vy be the valuation on Qipm) corresponding to The number ^ - 1

is a uniformizing element of in the sense that 1) L Moreover

one has v^ip) p — 1. From the prime ^3 we get the other primes in

Q{pm) above p by Galois action: each prime in Q{pm) above p is equal

to S$\ the image of ^3 under the Galois action of x, for a unique

X e Gal (Q(m)/Q).

(2.2) In the same way we get from the prime p all the primes in Q(m)

above p. However, in the last section of this paper, it will be more convenient

to use a slightly different description of the primes in Q(m) above p.

There we will not fix x> as we do in the rest of the paper, but we will
let it run over the <\>(m) multiplicative characters on Fp of order m. For each

such x we let p p(x) be the prime in Q(m) above p associated to %

in the way described above. Then p p(x) runs over the cj>(m) primes

in Q(m) above p.

3. The prime factorization of the Gauss sum:

STATEMENT OF THE RESULT

Before we state the outcome of the prime factorization of G we introduce

some more notation. For each i e Z with 0 < i < m and (/, m) 1 we

define the integer kt to be the exponent of the prime ^T'~' in the prime
factorization of G in Qipm) (it turns out that an inverse has to appear
somewhere and this is a convenient place). Equivalently, kt is the exponent
of the prime ^ in the prime factorization of GTl, that is,

(3.1) kt v^).
Any given action of a group T on an algebraic number field F induces

an action of the group T on 7(F), the group of fractional ideals in F.
Now we proceed with it just as we did above with the action of T on
the multiplicative group F* : we denote the action of T on 7(F) by the
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exponential notation, we extend it by Z-linearity to an action of the group
ring Zr on 1(F) and we denote this action also by the exponential notation.
If moreover £ is a subfield of F then we can view 1(E) as a subgroup of
1(F) by extension of fractional ideals ; moreover if a g 1(E) with a br for
some b g 1(F) and some re N and if X e Qr with rX e Zr, then we make as

usual the convention that the formal expression ax means the fractional ideal
b(^ in F. We define the Stickelberger element 0 in the group ring
Q[Gal(Q(m)/Q)] by

(3.2) 0 Ei1xr1
1 m

where i runs over the positive integers < m which are relatively prime to m.

The formal expression pe denotes the ideal ^3(p~1)e, by the convention made

above for fractional exponents and by the relation p <ÇP~1 between p
and S$.

Now we are ready to formulate the following result of Stickelberger on
the Gauss sum G as defined in (1.1):

(3.3) Theorem. The prime factorization of the Gauss sum G is pe.

(3.3) The statement of the theorem is clearly equivalent to the following
one: only the primes in Q(pm) above p occur in the prime factorization
of G, and their exponents in this factorization are as follows: for each

positive integer i < m which is relatively prime to m, the exponent of the

T-i. p-i.prime 431' is kt i.
m

4. A USEFUL LEMMA

In the proof of theorem (3.3) we will use a simple general lemma to
determine the exponents in the prime factorization of the Gauss sum G.

The aim of this section is to state and to prove this lemma. Let £ be a

field, v a discrete valuation on F, F(v) the residue class field of v and n a

uniformizing element of v, that is, n e F* with v(n) 1. An element u e £*
with v(u) 0 will be called a u-unit. We define a homomorphism I from £* to
Z x F(v)* by sending each a g F* to the pair (k, r) consisting of the integer
k v(a) and the residue class r in F(v) of the t;-unit a/nk. We call 1(a)
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the "leading term" of a g F* with respect to the valuation v and the uni-

formizing element tl We define the inertia group I of F at v to be the

group of those automorphisms of the field F which fix the valuation v and

which induce the trivial automorphism on the residue class field F(v).

Now let an element y of I be given. We consider the homomorphism p

from the multiplicative group F* to itself which sends a to aT 1 for each

a g F*. From our assumptions on the automorphism y the following facts

follow immediately :

(4.1) The leading term of p{u) is (0, 1) for each u-unit u.

(4.2) The leading term of p(ti) is (0, z) where z is the residue class in

F(v) of the r-unit tu7"1.

The following crucial lemma gives the effect of p on the leading term of

an arbitrary element of F*.

(4.3) Lemma. Let a e F*. If /(a) (/c, r), then l(p(a)) (0, zk).

Proof Let a g F* ; write a nku with k v(ql) and u a y-unit. Then

p(oc) p(Tu)kp(w). So, as / is a homomorphism and by (4.1) and (4.2),

we get that the leading term of p(a) is (0, zk) as required.

(4.4) Discussion. This lemma is intended for the following type of application.

Suppose we are given a field F, a discrete valuation v on F and

a non-zero element a of F and we are asked to determine the integer v(ot).

Then lemma (4.3) suggests the following approach. Find a non-trivial
element y of /, the inertia group of F at v and pick a uniformizing
element n of the valuation ring in F of v. Let m be the maximal ideal of this

valuation ring. Let c0gNu{oo} be the order of the residue class 7iY_1

mod m in the multiplicative group F(u)*. Having done that, determine a

rational integer k such that the following congruence holds

(4.5) aY_1 (ny~1)k mod m

It then follows that v(a) k (mod e0) (if eQ oo we just mean by this that
v(cl) k). The crux of the matter is that it is much easier to determine
v(ol) mod e0 via the congruence (4.5) than it is to compute v(a) itself by the
following "brute force" method, which is the usual approach : one embeds F
in its completion at v, one expands a there as a power series in tu with
coefficients in a suitable set of representatives of the residue class field F(v),
and one determines the leading term of the resulting expansion. Moreover,
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"sometimes" there is, once one has determined iz(oc) mod e0, a relatively
easy method to determine moreover v(oc) itself. It would take us too far
to give a formal account of this method, so in this matter we will restrict
ourselves to the special case of Gauss sums.

(4.6) For general insight it is of interest to know how e0 depends on y.
We will give the answer under the assumptions that the residual characteristic
of v is a prime number, say /, and that y has finite order, say e. For
each ne N we can write n lrn' with re Nu {0}, n! e N and I Jf n' ;

then we call n' the /-free part of n. Now we give the desired result.

(4.7) The number e0 is the /-free part of e.

We omit the proof of this fact, as we will not make use of it: in our
application it will be obvious what e0 is, once we have computed the class

of k7"1 in F(v) which is something that we have to do anyway.

5. The prime factorization of the Gauss sum:
PROOF OF THE RESULT

Now we are ready to prove theorem (3.3). We will do this by proving
the statements in (3.4).

Proof of (3.4). By proposition (1.2) (i), (iii) and (iv) only primes of
Q(pm) above p can occur in the prime factorization of G. Let i e Z with
0 < i < m and (z, m) 1. We have to determine the integer kt defined by (3.1).

We are first going to determine kt modulo p — 1 by using lemma (4.3).

We apply this lemma to F Q(pm), v wp, a Gx\ n C,p — 1 and

y ag where g e Z with 0 < g < p is such that g (mod p) generates

(Z//?Z)* F*; then k kt and the residue class field F{v) it Fp. This choice

satisfies the requirements of the lemma as og lies in Gal(Q(p)/Q) which is the

inertia group of ^3 in the extension Q(pm)/Q. Now let us calculate the left and

right hand side of the equality /(p(a)) (0, zk) which holds by lemma (4.3).
On the one hand p(a) GT<(Gs-1) which is by proposition (1.2) (ii) equal to

X(g)%i %(g)1 where g g mod p
p-i

and this is by (2.1) congruent to g m mod ^ Therefore

p-i
/(p(a)) (0, g - ')
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On the other hand,

z i^p" 1) °s" 1 I C
/ 0

which is congruent to g mod $ and so (0, (0,g*')- Therefore the

equality /(p(a)) (0, zk) amounts here to the following congruence

p -1.
g m

1

gki mod/?

that is, by the choice of g,

k: - -i mod p - 1

m

Thus ki has been determined modulo p - 1. In fact one may replace in (5.4)

the congruence sign by the equality sign as on the one hand clearly

0 <
P ~ 1

i < p - 1 and on the other hand by proposition (1.2) (iii) and (iv)
m

one has 0 < kt ^ vy(p) *= p - 1. Therefore one gets

This finishes the proof of the theorem.

6. Annihilators of the ideal class GROUP

OF A cyclotomic field

In this section we give an account of the annihilation of the ideal
class group of a cyclotomic field by the Stickelberger ideal. For each

commutative ring R with unit element, each R-module M and each X g R,

one says that X annihilates M or that X is an annihilator of M if Xr 0

for all r e M ; the set AnnRM of all annihilators of an R-module M clearly
forms an ideal in the ring R.

Let m > 1. The structure of C/Q(m), the ideal class group of the cyclotomic
field Q(m), and the action of the Galois group T Gal(Q(m)/Q) on it,
are of great interest. Information on this structure is contained in AnnzrC/Q(m).
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It is difficult to analyse this ideal directly. However, what one can do is to
relate this ideal to the annihilator of another Zr-module, namely pm(Q).

Let I Annzrjnm(Q), J AnnzrC7Q(m) and let 0 e Qr be the Stickelberger
element defined in (3.2). The main aim of this section is to derive from the

prime factorization of the Gauss sums as given by theorem (3.3) the fact that
multiplication in QT by 0 sends / into Jthat is 0/ ç /. The ideal 0/ in ZT
is called the Stickelberger ideal. This result shows that a part of J can be

obtained from I. Now / is the annihilator of a module with a rather transparent
structure and so it can easily be determined completely in a direct way. Thus

one achieves, all in all, the desired objective: one gets information on the
ZT-module C/Q(m). This section consists of two parts, which can be read

independently, the determination of / and the proof of the inclusion 0/ ç J.

We start by determining the ideal I Annzrpm(Q). For each x g (Z/mZ)*
we write <x> for the smallest non-negative representative of x in Z. We
define the set of elements {ßx}^ in Zr where x runs over (Z/mZ)* by

(6.1) ßx 1 if x 1

— <jx — < x > otherwise

This set is clearly a Z-basis of Zr, that is, every element X g Zr can be

written uniquely as

(6.2) %

where x runs over (Z/mZ)* and with axe Z for all x g (Z/mZ)*.

(6.3) Proposition. Let XeZF; write X as in (6.2). The following
conditions on X are equivalent:

(i) X annihilates pm(Q).

(ii) a1 0 mod m.

(iii) à,0 g zr.

Proof. (i)<^>(ii). Let Ç be a generator of the group pm(Q). For each

x g (Z/mZ)* one has clearly

Ç if x 1

1 otherwise.

Therefore (f ÇÛ1. As Ç has order m, it follows that (i) and (ii) are

equivalent.
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(ii) <s> (iii). We are going to compute the product in Qr of ßx and 0

for all x e (Z/mZ)*, in order to verify the following facts

(6.4) ßx0 9 if x 1

e Zr otherwise.

Proof of (6.4). Let x e (Z/mZ)* ; if x 1 the statement in (6.4) is

obvious, so assume x ^ 1.

ßxe (ax— <x>) <7>"1

where irunsover (Z/mZ)*. This is

„ <i> - ^ <*>
£. " S; CT; »

m 1 m

replacing in the first sum i by ix we get

_ <ix> « _ <x> <i> ^ <ix> - <i> <x>
y Oi - y. crf >.

i m m 1 m

in particular ßx0 g ZF. This finishes the verification of (6.4)

It follows from (6.4), using moreover (6.2) and the definition (3.2) of 0

that for each i e (Z/mZ)* the coefficient of in ^0 is a rational number
CLi <i>

which has the same class in the quotient group Q/Z as We
m

conclude that Xd e ZT iff a1 0 mod m, that is, (i) is equivalent to (iii).
This finishes the proof of proposition (6.3).

Having thus determined Annzrjam(Q) we now come to the main aim of
this section, which is to relate the annihilator ideal I of the Zr-module

to the annihilator ideal J of the Zr-module C/Q(m). This relation
is given by the following result, to be derived from theorem (3.3) and

proposition (1.2) (i), (ii); we will not need proposition (6.3) for the proof.

(6.5) Theorem. 0/ ^ J.

However there will be a problem. We will see that theorem (3.3) only
implies the following result (6.6). Let the absolute degree of a prime ideal
in an algebraic number field be the degree of its residue class field over
its prime field.
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(6.6) Let X e ZT. If X is an annihilator of pm(Q) then XO is an annihilator
of the subgroup of ClQ(m) generated by the classes of the primes in Q(m)
of absolute degree one.

In order to get the full result (6.5) one can proceed in either one of the

following two ways.

(i) One can extend theorem (3.3) and proposition (1.2) (ii) to Gauss

sums associated to arbitrary finite fields. Then the extended results imply
the desired theorem. However, the easy method of obtaining the prime
factorization of Gauss sums which is given in this paper does not seem to
extend to the case of arbitrary finite fields. Therefore we would fall back

on the usual proof of this prime factorization, which, though it is elementary,
requires rather delicate arguments.

(ii) One can instead allow oneself to use the following fact :

(6.7) The subgroup of ClQ{m) generated by the primes in Q(m) of absolute

degree one is the whole of C/Q(m).

This follows immediately from the following standard density results. Let F
be an algebraic number field, then

(a) The set of primes in F of absolute degree > 1 has zero Dirichlet
density.

(b) The primes in F are distributed over the elements of ClF, the ideal
class group of F, with equal Dirichlet density.

We choose the second alternative. Now we are ready to prove theorem (6.5).

Proof of Theorem (6.5). Let X be an innihilator of the Zr-module
pm(Q). By proposition (1.2) (ii) the number Gl in Q(pm)* is fixed by
Gal (Q(pm)/Q(m)) and so, by Galois theory, G1 e Q(m)*. By theorem (3.3)

we get the following result

(6.8) The fractional ideal p^e in Q(m) is principal.

Namely it has generator G\
Recall that the primes in Q(m) of absolute degree one are precisely

the primes which lie over prime numbers which are 1 mod m and

recall the description of such primes given in (2.2). Now we can, while

keeping m fixed, vary (p, %) over all pairs consisting of a prime number

p 1 mod m and a multiplicative character % on Fp of order m. Then p

runs over all primes in Q(m) of absolute degree one. Therefore (6.8) amounts
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to the fact that XQ kills the class in C/Q(m) of each prime in Q(m) of

absolute degree one. Therefore we have proved (6.6) and so, by (6.7), the

statement of theorem (6.5) follows.
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