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As yet it does not seem that these results would be accessible by elementary
arguments.

The study of flows on homogeneous spaces leads also to various other
number theoretic results, which we shall not go into here. We refer the reader
to the survey articles [4] and [19] for some of the ideas involved.

APPENDIX

TRAJECTORIES OF UNIPOTENT FLOWS AND MINIMAL SETS

We prove here a ‘qualitative version’ of Theorem 1.1 of [7] and use it to
deduce the general case of Proposition 7. We also deduce a result used in the
proof of Proposition 9. The proof of the ‘qualitative version’, namely
Theorem A.1 below is in the same spirit at that of Theorem 2.1 of [7] and the
earlier related results in [16], [3] and [5]. But the exposition here is simpler,
especially on account of the weaker formulation.

We begin by setting up some notation. As before we denote by R”, n > 2,
the n-dimensional vector space of n-rowed column vectors with entries in R,
by ey, ' - -, e, the standard basis of R” and by Z" the subgroup generated by
{e|, -+, e,}. By a lattice in R” we mean a subgroup generated by » linearly
independent elements in R”; a discrete subgroup A of R” is a lattice if and
only if R"*/A is compact. (Cf. [13], Ch. I, §3, Theorem 2.)

We equip R” with the usual inner product < , > with e;, ---, e, as an
orthonormal basis, and the corresponding norm | - | . This induces an inner
product on each (vector) subspace of R”. For any subgroup A of R” we
denote by Ag the subspace of R spanned by A. Let A be a discrete subgroup
of R”. Then there exists a basis Xy, ***, X, where r = dimension of Ag, such
that A is generated by {x;, -+ -, x,} (cf. [13], Ch. I, §3, Theorem 2). Let T be
a linear transformation of Ag such that T-'x;, -+, T~ !x, is an orthonormal
basis of Ag, with respect to the induced inner product. The number 1det ’C| 1S
independent of the choice of the basis x;, -+, x, and the linear transforma-
tion 1, so long as the above conditions are satisfied; the number is called the
determinant of A and is denoted by d(A).

As usual let SL(n, R) be the group of n X n matrices with entries in R and
determinant 1. By a unipotent one-parameter subgroup of SL(n, R) we mean
a unipotent one-parameter group of n X n matrices (-they are clearly contained
in SL(n, R).) We now state the theorem on orbits of lattices under unipotent
one-parameter subgroups, needed in the proofs of Propositions 7 and 9.
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A.1. THEOREM. Let n =2 be fixed. Then for c >0 there exists a
8 > 0 such that for any lattice A in R”", any unipotent one-paramerter
subgroup {u,},er 0of SL(n,R) and any T >0 either there exists s =2 T
such that |ux| =8 for all xeA — {0} or there exists a nonzero
(discrete) subgroup A of A such that d(u,A) <o for all tel0,T].

We introduce some more notation and prove some preliminary results
before going to the proof of the theorem. For any lattice A in R” we denote
by .~ (A) the set of all nonzero subgroups of the form A N W, where W is
a (vector) subspace of R”; such a subgroup is called a complete subgroup of
A. For each lattice A we equip > (A) with the partial order given by the
inclusion relation on subgroups and for any totally ordered subset S of & (A)
define

Z(S, A ={AeF (A) — S|S U{A} is a totally ordered subset} ;

the subgroups belonging to £ (S, A) are said to be compatible with S.

We next observe some properties of the function d on class of discrete
subgroups of R”. It is easy to see that if A is a discrete subgroup generated
by r linearly independent elements x;, -, x, then the determinant of the
r X r matrix (< x;, x;>) (with <x;, x;> in the / th row and j th column) is
d?(A). Under the same conditions, d?(A) also coincides with the sum of
squares of the determinants of all » X » minors of the » X r matrix with
Xy, "+, X, as its columns. This may be verified either directly or using
exterior products (if the reader would wish to save trouble, it may be men-
tioned here that Propositions 7 and 9 involve the contents of the Appendix
and in particular these observations only for #n = 3). These characterisations
enable us to deduce various properties of d needed in the sequel.

A.2. LEMMA. a) For any lattice A in R" and any p >0 the set
{Ae 7 (M|dA) < p} s finite.

b) Let A be a discrete subgroup of R". Let xeR" — Ax and let A’

be the (discrete) subgroup generated by A and x. Then d(A")
< | x| da).

Proof. a) Clearly, for any nonsingular matrix g there exist constants a
and b such that for any discrete subgroup A, ad(A) < d(gA) < bd(A). Since
any lattice is of the form gZ~ for some nonsingular matrix g, this shows that
it is enough to prove a) for A = Z”. If A is a subgroup of Z" generated by
r linearly independent elements x,, - - -, X,, then the determinants of all r X r
minors of the n X r matrix with columns X;, * - -, x, are integers. The condi-
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tion d(A) < p then implies, by one of the characterisations of d, that there
are only finitely many possibilities for the values of the determinants of the
minors. The finiteness assertion in the Lemma therefore follows from the fact
that if the corresponding » X r minors of two n X r matrices & and n have same
determinants then the columns of £ and nm span the same subspace of R”.

11) This is obvious, for instance, from the characterisation of d(A) in terms
of the determinants of » X r minors of the n X r matrix whose columns are
linearly independent and generate A.

A.3. LEMMA. Let A be a nonzero discrete subgroup of R”" and let
{u,} be a unipotent one-parameter subgroup of SL(n, R). Then d*(u,A)
is a polynomial in t of degree at most 2n(n—1). Further, d(u,A) is
constant (that is, d(u,A) = d(A) for all teR) if and only if Agr is
{u,}-invariant (that is u,Agr = Ag for all teR).

Proof. Ifvisan X nnilpotent matrix then by the Jordan canonical form
v" = (0. This implies that for any unipotent one-parameter subgroup {u,} of
SL(n, R) and any x € R”, the coordinates (entries) of u,x are polynomials in
¢t of degree at most n — 1. Now let A be a discrete subgroup generated by r
linearly independent elements x;, - -, x,. Then d?(u;A) is the determinant of
the r X r matrix (< u,x;, u,x;>). By the preceding remark each entry
< ux;, u;x;> 1s a polynomial in ¢ of degree at most 2(n—1). Hence the
determinant is a polynomial of degree at most 2n(n—1).

Next let A be a discrete subgroup such that d(u;A) = d(A) for all feR.
Let x;, - -, x, be linearly independent elements generating A. The determi-
nant of each r X r minor of the n X r matrix with columns u,x;, * -, u,x, is
a polynomial in 7. Since sum of squares of these is d?(u,A) = d?(A) for all
teR, it follows that each of them is constant. Thus for each reR any r X r

minor of the n X r matrix with columns u,x;, - - -, u,x, has the same deter-
minant as the corresponding minor in the » X r matrix with columns
X, **, X.. This implies that for any ¢, u,;x;, -+ -, u,x, span the same subspace
as xj, **+, X, or equivalently u;,Agr = Ar. This proves the Lemma.

For any m € N we denote by 7, the set of all nonnegative polynomials
of degree at most m; ‘nonnegative’ refers to the values being nonnegative —
some of the coefficients could be negative. For the proof of Theorem 8 we
need the following simple properties of nonnegative polynomials.

A.4. LEMMA. a) Forany meN and N> 1 there exists € >0 such
that the following holds: if Pe <, and there exists sel0,1] such that
P(s) >1 and P(l) <& then there exists te[l,\] such that P(t) = e.
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b) For any meN and > 1 there exist constants ¢€,€ >0 such
that the following holds: if Pe #,,P(s) <1 for all sel0,1] and
P(1) = 1 then there exists 1,0 < i< m, suchthat € < P(t) <e&, forall
refpitl pi+,

Proof. It can be seen that given an interval I of positive length
and a ¢ > 0 there exists a constant M such that any Pe -, such that
P(t) < c for all e, has all the coefficients of absolute value at most M; in
particular, any sequence of polynomials bounded by ¢ on 7 has a subsequence
converging to a polynomial in -#,,. Now if a) does not hold there must exist
a sequence {P;} in #,, such that P(¢) = 0 uniformly on [1,\] but the
supremum of each P, on [0, 1] is at least 1; this is impossible by the above
observation. To prove b) we first observe that existence of the upper bound
g, follows from the bound on the coefficients as above, when we take
I =10, 1] and ¢ = 1. Thus if b) does not hold there exists a sequence {P;} in
#,, such that for each k, P.(s) <1 for all se0,1],P,(1) =1 and
inf { P ()|t e[pn¥*!, n2+2]} > 0 as k — oo, for each i =0, ---, m; this is
impossible since the limit of any subsequence would be a nontrivial polynomial
in #,, with at least m + 1 zeros.

For the rest of the argument we fix some constants as follows: Let n e N
and p >1 be arbitrary. Let m =2n? and A >1 be such that
(A=1) < (u-1)/u?m+2 Let 0 < a <1 be such that condition a) as in
Lemma A.4 holds for ¢ = a? with 7 and A as above and let 0 < B, < 1 < B
be such that condition b) of Lemma A.4 holds for ¢, = B7 and &, = B3 with
m and p as above.

A.5. PROPOSITION. Let {u,} be a unipotent one-parameter subgroup of
SL(n, R), A be a lattice in R" and S be a totally ordered subset of
7 (N). Let 1>0 and T >0 besuch that foreach ®e 7 (S, A) there
exists a te(0, T] such that du,®) > t. Then either d(u;®) > ot for
all. ®e ¥ (S,A) orthereexista Ae?(S,A) anda T,e[T,2-pu -HT]
such that the following conditions are satisfied.:

1) 1oy < dw,A) <taB, forall te[Ty, T+w(T, - T
ii) for each ®e” (S, A) there exists te [7, T1]  such that
d(u,®) > ar.

Proof. Let 7 ={®e 2 (S, A)|dur®) < at}. If 7 is empty then we
are through. Now suppose that .7 is nonempty. By Lemma A.2 a) _7 is finite;
say .7 ={®y, -, ®,}, where ¢ > 1. For each J, 1 <j<gqg, we choose
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t;e [T, AT] as follows: Observe that d(ur®;) < at and that there exists, by
hypothesis, a fe€[0, 7] such that d(u,®;) > . Hence applying Lemma
A.4, a) to the polynomial ¢+ d?(u,7®;)/t> we conclude that there exists a
t;€ [T, AT] such that d (u,®;) = art; taking the smallest such number we may
also assume ¢; to have the further property that d(u,®;) < at for all
telT, ¢].

Next let 1 <k<g be such that ¢, <# for all 1</j<q. We
choose A = ®,. Then we have d(u,A) <atr for all te[T7, ] and
d(u, A) = at. Hence by Lemma A.4 b), applied to the polynomial
t—d?*(uq,-ner A)/0272, it follows that there exists an i such that 0 < i < m
and

*) top; < d(u,A) <top, forall telTy, T3],

where T, = T + pn2*Y(t,—T) and T, = T + pn?*2(t, — T). Then

T+wWT~T) =T+ p*2—T) < T+ p>2(4—-T)
< T+ p2(A-1)T < uT,

since i <m,t,el[T,AT] and (A—1) < (u-—1)/u?m+2, This shows that
T,e[T, 2—n~-1)T]. Also (*) shows that condition i) as in the Proposition is
satisfied for A. Condition ii) is obvious from the construction; if ® ¢ 7 then
d(ur®) > at and if ®e ¥, say ® = ®; where 1 </ < ¢, then we have
<<t <T and d(u,®;) = ar, which verifies the condition for all
® e Z'(S, A). Hence the Proposition.

A.6. COROLLARY. Let {u;},A,S,7>0 and T >0 be as in Proposi-
tion A.5. Let p be the cardinality of S. Then there exist a totally ordered
subset M of < (A) containing S and a Rel[T,nT)| such that the
following conditions are satisfied:

) a®PBt < dug®) < af,t forall ®eM - S
2) dugp®) = a-»1 for all ®e £ (M, A).

Proof. We proceed by induction on (n—p). If p = n then S is a maximal
totally ordered subset (so £'(S, A) is empty) and the desired assertion holds
for M = S. We now assume the result for p + 1 in the place of p and consider
A, S, and T as in the hypothesis. If d(u;®) > at for ® € £'(S, A) then we
can choose M = S and R = T. If not, then by Proposition A.5 there exist
Ae Z(S, A and T, e [T, 2—p ~1)T] such that taB; < dw,A) < o, for all
te[T,, T + W(Ty—T)] and for each ® e Z'(S, A) there exists a te[T, Ti]
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such that d(,®) > at. Put A; = urA, S, = {ur®|® = A or ®eS} and
1, = at. Then A, is a lattice in R”, S; is a totally ordered subset of & (A))
and the second part of the preceding conclusion implies that the hypothesis
of the corollary applies to Ay, S;,T; and 7T, — T in the place of A, S, T and
T respectively; we note that any WYe %£(S,,A;) is of the form
ur®, ® e £ (S, A). Hence by the induction hypothesis there exist a subset M,
of % (A,) containing S, and a R, e[T,—7,uw(7,—T7)] such that
a2V 1 < d(ug,Ay) < ofyty for all AjeM; — S and d(ug, )
> qn-p-D1, for all ®e %M, A). Put M= {u_rA/|A eM} and
R=T+R,. Then TSR T+ wW(T,—T) < uT, since T, [T, 2—pn~")T].
Observe that M — S = {®|® = A or u;®eM,; — S;}. The choice of A,
using Proposition A.5 shows that Condition 1) in the conclusion of the
Corollary holds for ® = A. If u;®eM,; — S, then we have d(ug®P)
= d(ug,ur®) € [a=7-YB;1;,0B,7;] C [a"~PB;y7, af,T], since T; = at and
a < 1. Thus Condition 1) holds for all ® e M — S. For ® € £ (M, A) we have
d(ur®) = d(ug,ur®) > atr-r-br = an-P1, since ur®e 2 (M, A,) and
T, = at; this shows that Condition 2) is also satisfied. This proves the
Corollary.

Proof of Theorem A.I. Let n and ¢ be as in the hypothesis of the
theorem. Let p > 1 be chosen arbitrarily and let a, B; and B, be the constants
chosen ahead of Proposition A.5, depending on n and u; recall that 0 < o < 1
and 0 < B, < 1 < B,. Let f = min{c, 5!} and let & = a"B,B; " .

Now let {u,} be any unipotent one-parameter subgroup of SL(n, R), A be
any lattice in R” and let 7 > 0 be such that there does not exist any nonzero
subgroup A of A such that d(u,A) < o for all 1[0, T]. This implies that for
all ® e 7 (A) there exists te[0, T] such that d(u,®) > c > 1. In other
words, the condition in the Corollary holds if we choose S to be the empty
subset. Hence by the Corollay there exists a totally ordered subset M of & (A)
and a Re [T, u7] such that a"f;t < d(uz®) < ap,t < B, for all ® e M and
d(ur®) > a1 for all ® € £ (M, A). Now let x be any primitive element in A
and let A be the subgroup generated by x. Then A € & (A). If x is contained
in every element of M then we see that AeM U % (M, A) and hence
| urx | = d(urA) = a"B;t > 8. Now suppose that x is not contained in
some elements of M and let @ be the largest element of M not containing x.
Let ¥ be the smallest complete subgroup of A (element of . (A)) containing
® and x. Then we see that Y e M U ¥ (M, A), as every element of M con-
taining ® as a proper subgroup also contains x. Now, by Lemma A.2 b)
d(ur¥) < | upx | d(ug®). But since ®e M and Y e M U % (M, A) we have
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d(ur®) < B, and duz¥) > a”B;t. Thus we get that | ugx | > aBip, 't
= 8. Hence | ugx | > & for all primitive x in A and hence the same holds for
all xe A — {0}, thus proving the Theorem.

A.7. COROLLARY. Given ¢ > 0 there exists a neighbourhood Q of 0
in R" such that for any unipotent one-parameter subgroup {u,} in
SL(n, R) and any lattice A in R" one of the following holds:

D {t=>0lu,An Q= (0)} isan unbounded subset of R.

2) there exists a nonzero subgroup A of A such that the subspace spanned
by A s {u}-invariant and d(u,A) = d(A) < o for all teR.

Proof. Let & > 0 be such that Theorem A.1 holds for the given ¢ and
let Q={xeR"||x]| <38}. Let {,} and A be as in the hypothesis and
suppose that Condition 1) does not hold. Then by Theorem A.l there exists
a nonzero subgroup A of A such that d(u,A) < o for all ¢ > 0. Since d?(u;A)
is a polynomial in ¢, this implies that duw;A) is constant; i.e.
d(u,A) = d(A) < o for all teR. By Lemma A.3, this implies that the
subspace Agr spanned by A is {u,}-invariant. This proves the corollary.

We next relate Theorem A.1 and Corollary A.7 to behaviour of orbits of
unipotent one-parameter groups of SL(n, R)/SL(n, Z), where SL(n, Z) is the
subgroup consisting of integral matrices. This involves the Mahler criterion
(sometimes also called Mahler’s selection theorem) recalled below. The reader
may refer [2], [13] or [24] depending on the background; one could also consult
Mabhlers original paper [15].

Let &, be the set of all lattices in R”. On &, one defines a topology by
prescribing that for each basis x;, ---,x, of R” and € >0 the set
Q(xy, ", x,,€), of all lattices A such that A is generated by a basis
Vi, * .y, of R7 satisfying | x; — y; | < e for all i, be open. This indeed
defines a first countable Hausdorff topology on &,. The Mahler criterion
asserts that if {A;} is a sequence in &, and there exist ¢ and & such that for
all i, d(A;) < cand | x| > 8 for all xe A; — {0} then {A,} has a convergent
subsequence. The criterion implies in particular that &, is locally compact.

Now let %, be the subset of &, consisting of all lattices of deter-
minant 1. Then %, is a closed subset, as d is continuous, and in particular
it is locally compact. For each ge SL(n, R) and A e %,, gA € %, and the
map (g, A) — gA defines a continuous action of SL(n, R) on %,. It is easy to
see that the action is transitive and that SL(n, Z) is the isotropy subgroup of
the lattice Z”, under the action. Hence SL(n, R)/SL(n, Z), equipped with the
quotient topology, is homeomorphic to %, via the correspondence
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gSL(n, Z)— gZ" for ge SL(n, R) (cf. [9], Ch. V, § 1, Theorem 8 or [10],
(1.6.1)). The Mahler criterion therefore implies that for any 5 > 0 the set

{eSL(n,Z)|| gp | =8 forall peZ" - {0}}

is a compact subset of SL(n, R)/SL(n, Z). Theorem A.l and Corollary A.7
therefore imply the following

A.8. THEOREM. Let n >2 be fixed. Then for any o > 0 there exists

a compact subset K of SL(n,R)/SL(n,Z) such that for any
= gSL(n, Z) € SL(n, R)/SL(n, Z), where ge G, and any unipotent one-

parameter subgroup {u,} of SL(n,R) the following conditions are

satisfied:

a) forany T >0 either thereexistsa t> T such that uxeK or there

exists a nonzero discrete subgroup A of Z" such that d(u,gA) <o
for all tel0,T],

b) if {t>0|uxeK} is bounded then there exists a nonzero subgroup A
of Z" such that the subspace spanned by A is {g~'u,g}-invariant
and d(u,gA) = d(gA) < o for all teR.

We next deduce the general case of Proposition 7, which we had deferred
until proving the above theorem. We follow the notation G, I', V;, DV, etc.,
as in the main part. The diagonal matrix diag (A, 1, A ~!) where A € R* will be
denoted by a()\), rather than d(A), to avoid confusion with d(A) for discrete
subgroups A. Also as before we denote by e, e;, e; the standard basis of R3.
The subspaces spanned by {e;} and {e,, e;} are denoted by W, and W,
respectively.

We first prove part b) of Proposition 7, namely the following:

A.9. PROPOSITION. There are no closed DV,-orbits. Any nonempty closed

DV -invariant subset contains a minimal nonempty closed DV, -invariant
subset.

Proof. Let K be a compact subset of G/T" such that the contention of
Theorem A.8 holds for (n =3 and)c = 1. We first show that for any
x=gl'eG/T, where geG, there exists Ay >0 such that for all

A=A, {1 = 0|v(t)a)x e K} is unbounded. Let ge G be given and let
x = gl'. Define

Ao = max {1, 1/d(gZ? n W), 1/d(gZ?} " W)} .
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Let A > Xy be arbitrary. Let A be a nonzero discrete subgroup Z3 such that
Ag 1s a proper subspace invariant under the action of g~l'a(X) ~'Via(\)g
= g~ 'V, g. Then gAg is a nonzero proper V;-invariant subspace. A simple
computation shows that W, and W, are the only such subspaces. Hence
gAr = W, or W,. Both W, and W, are a(\)-invariant and the determinant of
the restriction of a(A) to either subspace is A. Hence the preceding observation
implies that d(a(M)gA) = Ad(gA). Since gA is contained in either gZ3 N W,
or gZ3> N W,, by the choice of Ay we get that d(gA) > A, . Hence
d(a(M)gA) > M/ho =1 = o. In view of this verification for all A as above,
Theorem A.8 b) implies that {¢# > 0|v,(#)a(A)x € K} is unbounded as claimed;
note that as ¢ = 1, the subgroup A in Theorem A.8 b) spans a proper
subspace.

We now deduce the assertions as in the proposition. If possible let x € G/T
be such that DV x is a closed orbit in G/T. Let ® = {ge G|gx = x}. Then
® is a discrete subgroup of DV, and the map 6: DV,/® — DV, x defined by
0(g®) = gx for all ge DV, is a homeomorphism (cf. [9], Ch. V, §1,
Theorem 8 or [10], (1.6.1)). By Lemma 6 ® is either contained in V¥, or it is
a cyclic subgroup generated by an element of the form vdv —! where d € D and
ve V;. Suppose the latter possibility holds. Then we see that for each
A >0, Via(h)® is closed and 7+ v, (¢)a(M)® defines a homeomorphism of R
onto Via(M)®/®. Since 6 is a homeomorphism, this implies that for each
A >0, Via(M)x is closed and 7+ v, (t)a(A)x is a homeomorphism of R onto
Via(M)x. But, by our observation above, there exists A, such that for
A = Ao, {£ = 0]v; (1)a(M)x € K} is unbounded. This is a contradiction since by
the preceding observation it implies that {v;(?)a(M)x|t > 0} N K is a closed
noncompact subset of K. Now suppose @ is contained in V. Let {A;} be a
sequence of positive numbers such that A; = o. Then we see that as ® C V,
for any sequence {#;} in R, {a(A;)v,(t;)®} has no convergent subsequence in
DV,/®. Since 6 is a homeomorphism this implies that for any sequence {¢;}
in R, {a(A;)v;(¢;)x} has no convergent subsequence. But this is a contradiction
since K is compact and for all large A there exists # > 0 such that v, ()a(\)x
= a(A) (v;(L ~11)) x e K. Hence there are no closed DV,-orbits.

Now let X be any nonempty closed DV,-invariant subset of G/I". We see
that if {X;}.c; is a totally ordered family (with respect to inclusion) of
nonempty closed DV, -invariant subsets of X (indexed by a set I), then N;; X;
is nonempty as it contains N;c;(X; N K) and by the above observation each
X; N K is a nonempty compact subset. Hence by Zorn’s lemma the class of
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all nonempty closed DV, -invariant subsets of X has a minimal element. This
proves the Proposition.
To prove the other part of Proposition 7 we need the following Lemmas.

A.10. LEMMA. Let g=1 or 2 and forany p >0 let
A(g, p) = {el'|geG, g23 " W, spans W, and d@EZ*n W,) = p}.
Then A(q, p) is a closed subset of G/T.

Proof. 1t is straightforward to verify that any subset as in the statement
can be expressed as Q,al'/T" for some diagonal matrix a, Q; and Q, being the
subgroups defined by

0 = {gGGlgel =e} and Q, = {geG|’ge3 = e} .

Now consider the natural action of G on R3. We see that I'e; is a discrete
subset of R3. Hence so is I'se; for any seR. Let b be a diagonal matrix.
Then be; = se; for some s e R and hence I'be; is a closed subset of R3. The
continuity of the action and the fact that Q, is the subgroup consisting of all
elements fixing e; now implies that I'bQ, is a closed subset of G, for any
diagonal matrix b. Hence so is Q,al’ = (I'a ~'Q, ) !, for any diagonal matrix
a. This proves the case of the Lemma with ¢ = 1. The case of ¢ = 2 follows
from a similar argument with the contragradient action, defined by
(g, p)—'g'p for all peR3, in the place of the natural action, and e; in the
place of e;.

A.1l. LEMMA. Let Z be a locally compact space and let {¢,;},cr be a
one-parameter group of homeomorphisms of Z acting continuously on Z.
Suppose that there exists a compact subset K of Z such that for each

z€Z, the sets {t > 0|p,zeK} and {t <0|p,zeK} are unbounded. Then
Z s compact.

Proof. Let ¢ = ¢,. Replacing K by the larger compact set
{0;z] -1 <s<1,zeK} if necessary, we may assume that for each
z€Z,{keN|op*ze K} and {keN|p-*zeK)} are unbounded subsets of N.
Let K, be a compact neighbourhood of K and let Q =27 — K,. Let
B=n;_,¢/Q. Then ¢ “B C B C Q C Z - K for all J €N and hence the
condition on K implies that B is empty. Hence @B is empty. Since K, is com-
pact this implies that there exists m € N such that i 0'Q is contained in Q.
Then N/ ¢0/Q = N7 ,9/Q = E say. Then we see that 9E C E and hence
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¢/E C EforalljeN. Since E C Q C Z — K, the condition on K implies that
E is empty. Hence Z = U . ¢/(Z—Q), which is compact.

Part a) of Proposition 7 now follows from the following Proposition and
the earlier observation for compact invariant sets.

A.12. PROPOSITION. Any nonempty closed V,-invariant subset of G/T’
contains a compact nonempty V,-invariant subset.

Proof. Let X be a nonempty closed V,-invariant subset of G/I'. For
q=1,2 and any p > 0 let A(g, p) denote the closed subset of G/I' as in
Lemma A.10. In proving the Proposition, by replacing X by a smaller
(nonempty) subset if necessary, we may assume that for each ¢ = 1, 2 and
p > 0, either X n A(q, p) = 0 or X C A(qg, p); note that the sets A(qg, p) are
Vi-invariant and that for each g the sets {A(qg, p)},>0 are mutually disjoint.
Now let 6 < 1 be such that if X is contained in A(q, p) for some g = 1 or 2
and p > Othen ¢ < p. Let K be a compact subset of G/I" such that the conten-
tion of Theorem A.8 holds for this 6. We shall show that for each x € X the
sets {t>0[v;({)xeK} and {r<O0|v,(r)xeK} are unbounded; by
Lemma A.11 this implies that X (rather the replaced set) is compact, thus
proving the proposition. Suppose for some x € X, say x = gI” where g € G, one
of the sets as above is bounded. Then by Theorem A.8, applied to either
{vi(¥)} or {v,(—1)} in the place of {u,} and x as above, it follows that there
exists a nonzero subgroup A of Z" such that Ay is g~ !V,g-invariant and
d(v;()gA) = d(gA) < o for all teR. Since 6 <1 (as in the proof of
Proposition A.7) we see that gAg = W, or W,. This implies that
x =gl e X n A(g, p), where g = 1 or 2 and p is the determinant of the com-
plete subgroup of A containing gA and spanning the same subspace. By the
assumption on X we now get that X C A(q, p). By our choice of ¢ we then
have 6 < p. But this is a contradiction since p < d(gA) < o. Hence the sets
as above are unbounded and thus the proof is complete.

As noted earlier Propositions A.12 and A.9 yield parts a) and b) of Proposi-
tion 7, which thus stands proved. We next note the following variation of
Theorem A.8, first proved by Margulis [16], which was used in the proof of
Proposition 9.

A.13. THEOREM. Let n >2 be fixed. Let {u,} be a unipotent one-
parameter subgroup of SL(n, R) andlet xe SL(n, R)/SL(n, Z). Then there
exists a compact subset K of SL(n,R)/SL(n,Z) such that
{t > 0luxeK)} is an unbounded subset of R.
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Proof. Let ge G such that x = gSL(n, Z) and let A = gZ". In view of
Lemma A.2 a) there exists 6 > 0 such that d(A) > ¢ for all subgroups A of
A. Hence by Theorem A.1 there exists 8 > 0 such that for any T > 0 there
exists a s>7 for which |u&| =8 for all &£eA —{0}. Let
K ={hSL(n,Z)|| hp | = & for all peZ"— {0}}. Then by the Mahler
criterion, recalled earlier, K is a compact subset of SL(n, R)/SL(n, Z). From
the choices it is clear that {s > 0|u,x e K} is an unbounded subset. This
proves the theorem.
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