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ON THE INVERSIVE DIFFERENTIAL GEOMETRY

OF PLANE CURVES

by G. Cairns *) and R. W. Sharpe 2)

§ 1. Introduction

In this article we study the extrinsic inversive geometry of curves in the

Euclidean plane R2 under the inversive group G PSL2(C)~ of general

Möbius transformations. This is PSL2(C) extended by complex conjugation.

PSL2(C) itself is the special, or orientation preserving Möbius transformations.

An introduction to classical inversive geometry may be found in [18].

As our model for this geometry we take the complex plane C (with
coordinate z x + iy) together with the point at infinity, oo. The underlying

topological space is of course S2 and G is the group of conformai and anti-

conformal transformations of S2, but we use the standard Euclidean metric

on C. We shall assume that all our curves are oriented and smooth.

In §2 we recall Coxeter's invariant (cf. [5]), the "inversive distance",
between two non-intersecting circles. This is the imaginary part of their

imaginary angle of intersection. Based on this idea we obtain a proof of a result

of Kneser (cf. [9], p. 48) which says that on a vertex-free part of a curve y
the osculating circles never intersect. Using the square root of the inversive
distance between neighbouring osculating circles on y we obtain an invariant
1-form co (the infinitesimal inversive arc-length). This 1-form was apparently
first discovered by H. Liebmann in 1923 [12], although the name of G. Pick
is also mentioned by Blaschke in [2]. If y is parametrized by the arc-length s

and if k (s) denotes the curvature at the point y (s), then the 1-form co can
be identified as the 1-form ]/ |k'(T)| ds (cf. our §2, or [3], p. 92), and can
be extended continuously over the vertices. It follows that the set of vertices

(points where k'(s) 0) of a curve is invariant under the inversive group. The
integral of this invariant 1-form gives the inversive arc-length, v J co, a

9 This work of this author was done in part when he was a postdoctoral fellow at the
University of Waterloo.

2) The work of this author was supported in part by National Science and Engineering
Research Council of Canada grant A4621.
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natural invariant parameter for curves in inversive geometry. We end the
section with a table for the inversive arc-length for various conics.

The classical four vertex theorem, due to Mukhopadhaya in 1909, states

that every simple closed curve in R2 has at least four vertices. Though the

standard proof is easy in the case of convex curves, Kneser's 1911 [11]

generalization to the non-convex case is strangely more complicated, and the
result is usually stated without proof in introductory texts. Simple and elegant

proofs have been given by Valette in 1957 [17] (cf. also Pinkall 1987 [15]) and

Osserman in 1985 [14]. The theorem is also known to be true for S2 but the

usual proof is again quite complicated. Furthermore it is easy to construct
simple closed curves on the torus with only two vertices. In § 3 we present a

simple new proof of the four vertex theorem for (not necessarily convex) simple
closed curves on R2 based on the conformai invariance of the vertices. The

moral is that the four vertex theorem is really a theorem in inversive
differential geometry, where the larger symmetry group is a powerful aid. In
§4 we consider a generalization of the form co to curves y on an arbitrary
Riemannian surface given by the formula:

CÛy ]/WdS
where Kg is the geodesic curvature of the curve on the surface. It turns out
that this form is invariant under maps between surfaces which preserve the

curves of constant geodesic curvature, the so-called "concircular maps". As

a consequence of this we show in §5 the following result.

Theorem. If y is a smooth, null-homotopic, simple closed curve on a

complete Riemannian surface M of constant curvature, then the geodesic

curvature of y has at least four local extrema.

The remainder of the paper continues a general study of curves in the

inversive plane. The method used throughout is the method of moving frames

in one of its simpler incarnations, systematically developed by A. Tresse [16]

called "the method of reduced equations". In fact the spirit here is much the

same as the first part of É. Cartan's beautiful book [4].

In §6 we show that for each non-vertex point p on a curve y there is a

unique orientation preserving Möbius transformation geG such that

g~l(p) 0 and the Taylor expansion for the curve g-1(y) at the origin has

the normal form

(1.1)
x3 x5

y ± — +Q — + 0(x6)
6 60
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where ± sgn(K'). The denominator 60 (rather than the seemingly more

natural 5! 120) represents a normalization of Q to simplify formula 1.3

below and the calculations for the loxodrome in §9. It is clear that Q is

invariant under (special) Möbius transformations and so we call it the inversive

curvature of y at p. It can be calculated in terms of the Euclidean

curvature k(s) and its derivatives with respect to Euclidean arc-length by means

of the formula

4(k'"-K2K')K' - 5K"2
(1.2) Q —

8k

We note that although the sign of Q depends on the orientation of the plane,

it is nevertheless independent of the orientation of the curve. The

curvature Q corresponds to the invariant b/2 which Blaschke ([2], end of §21)

obtains by a completely different (and roundabout) method).
The procedure described above gives rise to a Frenet lift

g:y — [vertices) -> G, which is a curve on the Lie group G parametrized by

inversive arc-length. In §7 we show that parallel translation of the tangent

vector dg/dveTg(G) back to the identity by g~l yields the formula

/ ° 1

(1-3) g~'~dN Usgn(K')(Ô-0 0

It follows that the curvature Q determines the vertex-free curve up to a Möbius
transformation.

The curves with Q constant are especially interesting as they constitute the

"lines and circles" of inversive geometry. These are studied in §9 and turn
out to be what Blaschke [2] calls "loxodromes"; that is, they are the
equiangular spirals (Bernouli's spira mirabilis) and their inversive images.
Loxodromes are the orbits of 1-parameter subgroups of loxodromic
transformations.

In § 10 we use a simple notion of contact to define and determine the
complex of smooth, local "geometric" differential forms A*eo on a vertex
free curve in R1. This is a universal complex equipped with a homomorphism
Ty: A*eo - A*(y) to the de Rham complex of y for every vertex free curve y,
and satisfying the invariance property that TY g*Tg(Y) for every g eG. It
turns out that A*eo is generated by the function Q and the form co so that
these are essentially the only interesting smooth local invariants of curves in
R2.
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