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by Tarasov [12], [13], for the case of Y(8l,), using ideas of Korepin [8], and
was extended by Drinfel’d [5] to the general case. The evaluation represen-
tations and their tensor products appeared implicitly in the work of Kulish,
Reshetikhin and Sklyanin [9] mentioned above, but they did not prove that
all finite-dimensional irreducible representations are of this form. Our
determination of the precise conditions under which such tensor products are
irreducible is also new.

One of the difficulties of this subject is the unfamiliarity of the language
in which many of the fundamental papers are written, which is that of quantum
inverse scattering theory and exactly solvable models in statistical mechanics.
We have tried in our presentation to express the results in more conventional
mathematical language. In fact, all that is required is some familiarity with
the basic techniques of Lie theory.

1. YANGIANS

We begin with the definition of the Yangian taken from [4]. Let {I;} be
an orthonormal basis of §l, with respect to some invariant inner product
(,); for example, using the trace form

(x, ») = trace(xy) ,

, XT+x" IixtT—-x") h
one can take the basis -, — , —:} , where {x*,x~, h}

1s the usual basis:

[, x*] = x2x* |, [x*,x ]=~h.

Definition 1.1. The Yangian Y = Y(81,) associated to 31, is the Hopf
algebra over C generated (as an associative algebra) by 81, and elements J(x)
for x € ¢1, with relations

() [, JO] = J(x, ¥, Jlax+ by) = aJ(x) + bJ(y), a, beC,

2) [/(x), J([y, z])] + cyclic permutations of x, y, z
= ([X; ]}»] ) [[y: ]u] ’ [Z: [\]]) {IX, ],us [V} s
(3) (70, JO1, [z, JWIT + [[J(2), JW)], [x, JO)]]

= ((Ix, L1, [, L, [lz w1, LD + (Iz, L1, [[w, L], [Ix, Y1, LID) {L, 1y, L},
where repeated indices are summed over and

{anxz,x3} = Z Xr()Xr@)Xr@3) »

bis
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the sum being over all permutations 7 of {1, 2, 3}. The co-multiplication map
of Y is given by

4) A =x®@1+1®x,
AUX) =T ®1+1® Jx) + —;— [x®1,Q,

where Q is as defined in equation (0.7).
Remarks.

1. Relation (2) is actually a consequence of the other relations. We have kept
it because relations (1), (2) and (3) are the defining relations of the Yangian
assoclated to an arbitrary finite-dimensional Lie algebra g, and in the general
case (2) is not redundant.

2. Therelations depend on the choice of inner product ( , ) but, up to isomor-
phism, the Hopf algebra Y does not.

There is another realization of Y due to Drinfel’d [5, Theorem 1] which
we shall need in the discussion of highest weight representations of Y in the
next section.

THEOREM 1.2. Y isisomorphic to the associative algebra over C with
generators x, ,x. ,h, for k=0,1,... and relations

(1) [Aes k] =0, [ho,xi]=%2x;, I[x/,x,71=hesr;
) [irr,xi] = [, x50 ] = & (x| + X[ hy)
B) v X 1= I, xi] =+ (x| +x7x0) .

The isomorphism & between the two realizations of Y is given by
O(h) = ho, O(x*) =xq ,

1
d»(J(H) = hy + 5 (xgxg +x9 x5 —hY),

+ 1 + +
o(J(x*)) = x; — " (xg h+ hxy) .

One of the difficulties which arises in using this realization of Y is that no
explicit formula for the co-multiplication map A on the generators A, x; is
known. However, the following formulas follow easily from the formulae in
Definition 1.1 and Proposition 1.2:

Ahg) =hy® 1+ 1K hy,
AB) =h @1+ hQh +1Q h —2x, ® x,
Axg)=x, 1 +1®xg,
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(1.3) A(xf)zxf®1+1®x1++ho®x5
Axg) =X, 1 + 1 &® x4 ,
A7 )=x;, ® 1 +1®@x; +x, ® ho.

As an application of these formulas we shall prove the following useful result.

PROPOSITION 1.4. The assignment x; — Xg ,Xg > X, he> W, keZ,,
extends to an anti-homomorphism ®:Y — Y.  Moreover, the following
diagram is commutative:

.
Y - Y®Y
o | | 0®o
Y - Y®Y

A

Proof. The fact that o extends to an anti-homomorphism of Y follows
almost immediately from the relations in Theorem 1.2. To prove that the
diagram is commutative, it is enough to check that Aw and (®w ® w)A’ agree
on a set of generators of Y. From the relations in (1.2) and the form of the
isomorphism ¢, it is clear that Y is generated by A, x, and x| . For Ay, x§
the verification is trivial. From equations (1.3) we have

Aoy ) = Ax))
=x  ®1+1Q@x + h® x; .
On the other hand,
(@Q0A (X, ) =(0R0) (x; ®L+1RQx +hRx;)
=X @1 +1Q®x) +h®x; .

The proof for x; is similar.

Definition 1.5. Let H (resp. N*) denote the subalgebra of Y generated
by the Ay (resp. x; ) for keZ, .

We shall now give a more precise description of the co-multiplication map.

PROPOSITION 1.6. The co-multiplication map A of Y satisfies:

(1) Ah) =h @1+ h 1 Q@ hy + he 2 ® by
+ o+ hy @ A + 1 QR ke modulo Ep>OY® Yx; + Yx;@Y;
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2) A(xk*):x,:’®1+ho®x;_1+h1®x;_2
o+ ®xf +1®x; modulo ), Yx, ® Yx x| ;

p.qg,rz0
3) Ax,)=x, 1 +x,_ @ hy+x,_,Kn
+ -+ xy @ M-y +1 & x, modulo Zp,q’rZOYxp_x; ®x,+.

For the proof, we shall need

LEMMA 1.7. For all k,leZ., we have x;heHN* and
h[Xk—EN—H.

Proof. We prove the first formula by induction on /; the second follows
from the first by Proposition 1.4. If / = 0, then by (1.2) (1),

Xg hy = hox) — 2x;
which is in HN™*. Next, by (1.2) (2),
rsrsxi 1= [h,x ]+ luxl + x0 hy
=, Fx)+ el —xi )h.
Hence,
Xghior = hoix) — hiGefo +x0) + O —xO)

which belongs to AN * by the induction hypothesis.

Proof of Proposition 1.6. It is enough to prove formula (2). For (3)
follows from (2) by Proposition 1.4. Also,

Alhe) = Allxy . xo 1)
= [ACcy ), xg ®1+1®xq ]

1

k—
=@l + M Qhy+ - +1 Q@M —2 ) X7 ®x;_ .,

0

modulo Y, [Yx, ® Yx x ,x @1 +1®x"].

p,q,rz0

To prove (1), it therefore suffices to prove that x; x!x; € ), $30 Yx. . Since
+ o+t - L+ + L+ Lt

Xg X, Xg =X, b+ X, X5 X, ,

this follows from Lemma (1.7).

- 1
To prove (2), define A, = h; — Ehé Then:
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(1.8) Ah)=h @1 +1® h —2x, ® x4 ,
(1.9) [1’%1,x;] = Py eq s
(1.10) A, x7] = — 2x0,,-

In fact, (1.8) follows from (1.3) and (1.9) is proved by induction on k, using
the relation

hy, xi 1 — [ho, X501 = hox; + Xz ho s

1 2 + .
the right-hand side of which is [5 ha,xk'] . Finally, (1.10) follows from

(1.9) and (1.4).
The proof of (2) now proceeds by induction on k. The result is known for
k = 0 and 1. For the inductive step, we use (1.8) to obtain

2A(x7, ) = A[hy, X7 1)
=M@l +1Q®h —2x; x¢,x{ 1 +1Qx;

k-1

+ Y B®x; . ,+R],

i=0

where the remainder term Re ), Yx, ® Yx,x/ . Hence, using (1.9),

p,q,r=0

k
A(xl::—l) :xk++1 ®1+1 ®le+1 + Z hi@x;—i+ R’
=0

1

where

1 - ~ .
R’:E[h1®1+1®h1—2x0‘®x0‘,R]-x(;@[X&LaX/:]

k-1
- Z (hixy ®[xg’xlj—i—1] + 2x; ®xo+xk+—i—1) .
i=0

It suffices to check that the first term belongs to ij ars0 Y%, & Yx, x|,
and this follows easily from (1.9) and (1.10). This completes the proof.

Finally, we shall need the following analogue of the easy half of the
Poincaré-Birkhoff-Witt theorem.

PROPOSITION 1.11. Y=N-_H.N+.

Proof. The proof is the same as for Lie algebras. Choose any total
ordering < on the generating set {x; , A}z, such that x; < & <x} for

m
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all k,,meZ,.1f u = uju,...u, is any monomial in the generators of degree
n, define its index

ind(u) = ), &;

i<j
where

{O if  u <uy
Eij = :
1 if U < u;.

Using Lemma 1.7, each monomial can be written as a sum of monomials
of smaller degree, or smaller index, and hence, by an obvious induction, as
a sum of monomials of index zero.

2. HIGHEST WEIGHT REPRESENTATIONS

By analogy with the definition of highest weight representations of semi-
simple Lie algebras, one makes the following

Definition 2.1. A representation V of the Yangian Y is said to be highest
weight if there is a vector Q € V such that V' = YQ and

X;Q:O, th‘—‘de, k:O,l,...

for some sequence of complex numbers d = (dy, d;, ...). In this case, Q is
called a highest weight vector of V and d its highest weight.

Remark. It follows immediately from Definition 1.1 that the assignment
x —x for x € §[, extends to a homomorphism of algebras 1: U(8[,) = Y. By
Proposition 2.5 below, 1 is injective. Thus, any representation of Y can be
restricted to give a representation of 8[,. In particular, we can speak of
weights relative to §[, as well as relative to Y. It will always be clear from
the context which type of weight is intended.

As in the case of semi-simple Lie algebras, there is a universal highest
weight representation of Y of any given highest weight:

Definition 2.2. Let d = (dy,d;,...) be any sequence of complex
numbers. The Verma representation M(d) is the quotient of Y by the left ideal
generated by {x;, hx — di* 1}iez, -

PROPOSITION 2.3. The Verma representation M(d) is a highest weight
representation with highest weight d, and every such representation is
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