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all k, l, m e Z+ If u U\ u2... un is any monomial in the generators of degree

n, define its index

ind(w) Yé

i<j

where

{0
if Uj -< Uj

1 if Uj -< Ui

Using Lemma 1.7, each monomial can be written as a sum of monomials
of smaller degree, or smaller index, and hence, by an obvious induction, as

a sum of monomials of index zero.

2. Highest weight representations

By analogy with the definition of highest weight representations of semi-

simple Lie algebras, one makes the following

Definition 2.1. A representation V of the Yangian Y is said to be highest

weight if there is a vector Q e V such that V YQ and

xk Q 0, hkQ dkQ, k 0,1,

for some sequence of complex numbers d (do, d\, In this case, Q is

called a highest weight vector of V and d its highest weight.

Remark. It follows immediately from Definition 1.1 that the assignment

xhi for x e $I2 extends to a homomorphism of algebras i: U{%\2) Y. By
Proposition 2.5 below, i is injective. Thus, any representation of Y can be

restricted to give a representation of §{2> In particular, we can speak of
weights relative to %\2 as well as relative to Y. It will always be clear from
the context which type of weight is intended.

As in the case of semi-simple Lie algebras, there is a universal highest

weight representation of Y of any given highest weight:

Definition 2.2. Let d (d0, d\, be any sequence of complex
numbers. The Verma representation M(d) is the quotient of Y by the left ideal

generated by {x^,hk-dk1 }keZ+.

Proposition 2.3. The Verma representation M(d) is a highest weight

representation with highest weight d, and every such representation is
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isomorphic to a quotient of M(d). Moreover, d) has a unique

irreducible quotient V(d).

Proof. Only the last statement requires proof. We consider M(d)
as a representation of $I2. By Proposition 1.11, the <i0-weight space

{u eM(d): h0.u d0u} is one-dimensional, and spanned by the highest

weight vector leM(d). Thus, if Mx and M2 are two proper subrepre-

sentations of M(d), then Mx + M2 is also proper. It follows that M(d) has a

unique maximal proper subrepresentation.

The question of which highest weight representations are finite-dimensional

was answered by Drinfel'd in [5, Theorem 2]. His result may be stated as

follows.

Theorem 2.4. (a) Every irreducible finite-dimensional representation of
Y is highest weight.

(b) The irreducible highest weight representation V(d) of Y is finite-
dimensional ifand only if there exists a monic polynomial P e C [u] such that

P(u+ 1)

P(u)
— 1 + Yi dk u '

in the sense that the right-hand side is the Laurent expansion of the left-hand
side about u oo.

To construct examples of highest weight representations of Y, we need the

following result, which is an immediate consequence of the defining
relations (1.1).

Proposition 2.5. (a) The assignment x^x,J(x)i— 0 extends to a
homomorphism of algebras s0: f/($l2).

(b) For any a e C, the assignment x^x, J(x) i-> J(x) + ax extends to an
automorphism xa of Y.

By part (a), if F is a representation of $I2, one can pull it back by s0 to
give a representation V of Y. Pulling back this representation by xa then gives
a one-parameter family of representations V(a) of Y. Note that V(a) is an
irreducible representation of Y because s0 is surjective.

Let Wm be the (m + l)-dimensional irreducible representation of
$I2, me Z+. Then, Wm(a) has a basis {e0,...,emj on which the action of Y
is given by:

x +
• ei — (I + 1)£/ +1, x~ .et (m — i+ X)ei^x, h. c,- (2/ — m)el
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the action of J{h) (resp. J(pc±)) being a times that of h (resp. x±). To make

contact with the theory of highest weight representations, we need:

Proposition 2.6. The action of the generators hk, xk on Wm(a) is

given by:

I 1 1\*
a —m + i + - (i + l)e^

\2 2)
1 l\.e< I a—m + ; —\ 2 2/

II 1
• D'

e, { I a—m

+
— I

H 2 2/

- -m + i + - j (/ + 1) (m - oj

(1) xt.e^
\ L L J

(2) xk et | a - -m + / - - | (m - i + l)et-1 ;

(3) hk.ei= I a—m + i—) i(m - i + 1)

i. —m + i + - (/ + 1) (m - i)} et
2 2) J

Proof. It is straightforward to check, using the relations (l)-(3) in

Theorem 1.2, that these formulas do define a representation of Y. It therefore
suffices to check that they also give the correct action of the generators
h, J(h), a± J(x±). This is another straightforward computation, using the

isomorphism § in (1.2).

Corollary 2.7. (a) Wm(a) is a highest weight representation with

highest weight d {d0,di, given by

1 l\km\a + -m —I 2 2)
dk

(b) The monic polynomial P associated to Wm(a) is given by

I 1 !\ / 1 3\ / 1 M
P(u) - I u - a + -m - - J

I u - a + -m - - I I u - a - -m + - I

Proof, (a) It is clear that em is a highest weight vector for Wm(a) relative

to Y. The eigenvalues of the hk on em are as stated.

(b) By Theorem 2.4(b), the polynomial P is determined by

P(u+ 1)
=1 + £L<

P(u)
m

1 1

a + -m —
\ 2 2

k
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1 1

u - a + -m + -
2 2

1 1

u - a —m + -
2 2

The stated P clearly satisfies this equation.

In section 4 we shall need to consider the duals of the evaluation representations

Wm (a). If V is any finite-dimensional representation of Y, its dual V*

is naturally a representation of Yop, the vector space Y with the opposite

multiplication:

x.y(in Yop) y.x (in Y)

Moreover, Yop is a Hopf algebra with the same co-multiplication as Y.

Proposition 2.8. There is an isomorphism of Hopf algebras

0 : T - Yop such that

9(a) — x 0(T(a)) J(x)

for all x g §1? •

Proof. It is sufficient to prove that the assignment x - a, /(a) \-+ J(x)
extends to a homomorphism of Hopf algebras Y Yop. The relations in Yop

are obtained by inserting a minus sign on the right-hand side of relations (1)

and (3) in (1.1). The result is now clear.

Remark. The anti-homomorphism 0 : Y Y is closely related to the

antipode S of Y, which is given by

S(.a) - A S(J(x}) - J(a) + — CA
4

where c is the eigenvalue of the Casimir operator in the adjoint representation
of §I2 (which depends of course on the choice of inner product on êï2).

Thus, if Pis a finite-dimensional representation of Y, then F* is a representation

of Y with action

<>•/) (O)f(Q(y).u)

for y eY, ü e V and / e K*. Moreover, the fact that 0 preserves the co-
multiplication implies that (J^® K2)* V\ (x) V\ for any two representations

V\, K2 of Y.
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Corollary 2.9. As representations of Y, we have

Wm(a)* Wm(-a)
Proof. On Wm(a), J(x) acts as ax. Therefore, on Wm(a)*, J(x) acts as

- ax.
The following is a related result.

Proposition 2.10. Every evaluation representation Wm(a) has a non-
degenerate invariant symmetric bilinear form.

This means that there is a non-degenerate symmetric bilinear form < >
on Wm(a) such that

(2.11) <y.vuv2> <ul,w(y).u2>

for all y e Y, v2e Wm(a).

Proof. It is well-known that the representation Wm of §I2 carries a form
< > which satisfies (2.11) for d\\ye§>\2. Moreover, the form is unique up
to a scalar multiple because Wm is irreducible. To prove (2.11) in general, it
suffices to check the case y x^ since the case y x^ then follows because

< > is symmetric, and co(x^") x^ Since vectors of different weights
are orthogonal, it is therefore enough to prove.

(2.12) <x^.ehei + k>

(with the understanding that et 0 unless 0 ^ ^ n). This follows easily from
Proposition 2.6 and the invariance of < > under §I2.

3. A COMBINATORIAL INTERLUDE

The form of the polynomial P associated to the representation Wm(a) in

Corollary 2.7(b) suggests the following definition.

Definition 3.1. A non-empty finite set of complex numbers is said to be

a string if it is of the form {a, a + 1, a + n) for some a e C and some ne N.

n
The centre of the string is a + - and its length is n + 1.

2

We shall also need:

Definition 3.2. Two strings Si and S2 are said to be non-interacting if
either
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