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4. ALGEBRAIC PROOFS

In this section, we will restrict our attention to number fields, i.e. finite
extensions of the field of rational numbers Q. The degree of a prime in a
number field will be the degree with respect to Z.

Let F be a number field, { a cycle of F and CI; the ray class group of
conductor | of F, and Cr the idele class group of F. For each prime p of F,
we fix an element m, € Cr that is the residue class of a prime element at p.
There is a natural surjection ¢;: Cr—> Cl; that maps 7, to the class of the
prime ideal p for each p not dividing f. A subgroup of Cris open if and only
if it contains ker ¢; for some conductor { of F. Our theorem 2 may now be
reformulated as follows.

THEOREM 2'. Any open subgroup of Cr that contains all but finitely
many of the elements mw, with yp of degree one is equal to Cr Iitself.

If E is a finite extension of F, then the norm subgroup Ng,Cg is open
and of finite index in Cr. If E/F is cyclic, the first inequality from class field
theory states that [Cr: Ng,rCgl = [E: F].

LEMMA. Let E/F be an extension of number fields, and suppose that
almost all primes of degree one of F split completely in E. Then E = F.

Proof. All primes of F that split completely in E split completely in the
normal closure £’ of E over F, so the assumption also holds for E’/F. If
E’ # F, then there exists a subextension F C F’ C E’ for which E’/F" is cyclic
of degree [E":F']>1. By the first inequality, this implies that
Ngr/pCgr # Cpr. On the other hand, Ng., Cg/ contains n, for each prime p
of F’ that splits completely in E’. This contradicts theorem 2’. [

As a corollary, we obtain a theorem of Bauer (1916). Bauer’s original
proof [1] is based on the Frobenius density theorem [8].

COROLLARY 1 (Bauer [1]). Let F be a finite normal extension of Q,
and suppose that E is a number field such that all but finitely many of the

primes p that have an extension of degree one to E split completely in F.
Then F is contained in E.

Proof. All but finitely many primes of degree one of E split completely
in FE/E, so FE = E by the lemma.
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Our lemma also shows that ray class fields are characterized by a weak
| form of their original definition as abelian extensions of a number field
| characterized by a certain set of primes splitting completely in the extension.

COROLLARY 2 (Deuring [5]). Let F be any number field, | a cycle
' of F and E an extension of F in which almost all primes p of F
| satisfying p = 1mod*f split completely. Then E is contained in the ray
class field modulo | of F.

Proof. Let R be the ray class field modulo f of F. Almost all primes of
degree one of R lie over a prime p of F that is 1 mod*f{, so they split completely
in RE/R. 1t follows that RE = R. [

Proof of theorem 3. Let E’ and F’ be the fields corresponding to H; and
H,. Then [E': F'] > 1, so by the lemma there are infinitely many prime ideals
p of degree one in F’ that have an extension p’ to £’ for which degp’ > 1.
Let q be an extension of such a prime p’ to E. Then the Frobenius element
of q in G lies in H, but not in H,;. Note that we obtain as additional
| information that the restriction of ¢ to F is of degree one. [

As a consequence we have Wojcik’s result [17] mentioned in the
introduction.

COROLLARY. Let H, and H, be subgroups of the ray class group
Cl; of a number field F such that H, CH, and H,+# H,. Then there
- are infinitely many primes y of F for which the ray class pmod*f{ lies
in H>\H,.

‘ Proof. Take for E/F the ray class field extension of conductor f, then
| Gal(E/F) = CI; and our claim follows from theorem 3. [

, Using the generalization of theorem 2 discussed in the remark at the end
- of section 2, one can in a similar way prove the analogue of theorem 3 for
| the function field case. However, the somewhat intuitive distinction between
algebraic and analytic proofs we accepted for the number field case becomes
rather questionable here, as one may very well argue that the zeta-functions
| occurring in the ‘‘analytic proofs’’ are formal power series and therefore of
an algebraic nature.
We finally describe the somewhat bizarre situation that arises when one
tries to give an algebraic proof of the following well known theorem
3, p. 362].
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THEOREM. If feZ[X] is an irreducible polynomial that has a zero
modulo almost all primes p, then [ s linear.

In order to see what is needed for a proof, assume that deg f > 1, and
let G be the Galois group of the splitting field of f. Then G acts transitively
on the set Q of roots of f, and the assumption that f has a root modulo p
for almost all p implies that almost all Frobenius elements in G fix a root of
f.1f H C G is the stabilizer of some @ € Q, the subset of G consisting of those
elements that fix at least one element of Q equals U geGgHg‘ I, As no finite
group is the union of the conjugates of a proper subgroup, G contains elements
that fix no root of f, and which therefore occur as the Frobenius of only
finitely many primes in the splitting field of f. This obviously contradicts the
Cebotarev density theorem.

In order to replace Cebotarev’s theorem in the argument above by a
weaker, algebraically provable form like our theorem 3, we need an element
o of G that fixes no element of Q and whose order is a power of a prime
number. Indeed, if 6 has g-power order then each element of (c¢) — (c?)
fixes no element of Q, and we obtain a contradiction since theorem 3 implies
that there are infinitely many Frobenius symbols among them. Thus, we are
reduced to proving the following.

LEMMA. Given a finite group G acting transitively on a finite set Q
of cardinality #Q > 1, there exists o€ G of prime power order that fixes
no element of Q.

Suppose G is a counterexample of minimal order to this statement, and let
H be the stabilizer of some element of Q. The set of left cosets in G of a
maximal subgroup H’ D H with natural G-action now also gives a counter-
example to the lemma, so we may assume that H is a maximal subgroup of
G. We have D = (), ;eHg ! = {1}, since otherwise the action factors via
G/D and an element of prime power order fixing no element of Q in G/D can
be lifted to an element of the same sort in G. Now suppose G has a normal
subgroup N # {1}. Then Hn N = {1}, so G = NH and N acts transitively
on the set of left cosets of H in G, hence on Q. By the minimality of G, we
conclude that N = G, so G is simple. Now the lemma is known to hold for
simple G, but the only existing proof (which, as M. Isaacs kindly pointed out
to us, can be found in [7]) proceeds by checking all cases given by the classifica-
tion of finite simple groups. Thus, it turns out that currently we can only
eliminate the use of Cebotarev’s density theorem in our proof at the cost of
introducing the classification of finite simple groups.
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