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THE CATEGORY OF NILMANIFOLDS

by John Oprea

Abstract. The techniques of rational homotopy theory are used to

compute the category of a nilmanifold: cat(M) dim M rank (n iM). This

information is of interest to dynamicists since the theorem of Lusternik-
Schnirelmann then shows that the number of critical points of a smooth

function of M is bounded below by rank(TiiM) + 1.

Introduction

As a first step to understanding the structure of certain dynamical systems

on nilmanifolds, one might hope to have computable lower bounds on the
number of critical points of smooth functions. Of course, one is then led to
the Lusternik-Schnirelmann definition of category and their well-known result
that category (+1) is such a bound. Unfortunately, category is rarely
computable, so those who require numerical bounds often employ the fact that
category majorizes cuplength. Hence cuplength (which, generally, is a more
computable homotopy invariant than category) is the numerical invariant
frequently sought for in order to provide a lower bound for the number of
critical points of smooth functions on a manifold.

Indeed, some time ago, for the reasons above, Chris McCord asked me if
I knew of a formula for the cuplength of a nilmanifold. I did not then, and
after many computations I do not now! Thus, I pose:

Question. What is the cuplength (with Q-coefficients say) of a
nilmanifold?

Suprisingly, however, the need for such knowledge by dynamicists is
obviated by the following.
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Theorem I. If M is a (compact) nilmanifold, then cat(M)
dim (M) rank(7ii M).
Hence, the best possible result which Lusternik-Schnirelmann theory can

provide for nilmanifolds is the immediate.

Corollary. The number of critical points of a smooth function on a

(compact) nilmanifold M is bounded below by rank(7tiM) + 1.

In fact, Theorem 1 was announced for all K(n, l)'s by Eilenberg and Ganea

[11]. Unfortunately, details of the proofs of their three fundamental propositions

never appeared, thus contributing, I believe, to the ignorance of the result

among the dynamicists and topologists of today. Indeed, this paper was

originally written in response to Chris McCord's question and without
knowledge of the Eilenberg-Ganea result. Furthermore, in looking at the

Eilenberg-Ganea propositions, it is difficult to see the relationship between the

structures of n and K(tc, 1) and the consequent determination of category as

rank(7i). I hope that the approach of this paper will remedy this defect, at least

in the case of nilmanifolds. The beautiful structure theory of nilmanifolds (i.e.

finitely generated torsionfree nilpotent groups) is ideally suited for an

approach in terms of minimal models. In fact, in some sense, this paper is

simply an exposition of just how well rational homotopy theory and

nilmanifold theory fit together (in the representative situation of determining
category).

Theorem 1 will be given a simple ("up to" the machinery of rational
homotopy theory) proof in §4. Since this paper is written for workers in
dynamical systems, I have tried to make it somewhat self-contained.

Therefore, § 1 and §2 are devoted to recollections on category and its rational

homotopy description respectively. §3 recollects structural knowledge of
nilmanifolds and § 5 presents an analogue of Theorem 1 for iterated principal
bundles. (The basic reference for the rational homotopy version of L.S.

category is [3] ; I have attempted to cull the essential ingredients for the proof
of Theorem 1, but the reader will find other interesting applications in that
work. Also see [2].)

§ 1. Category

The category of a space M, cat (M), is the least integer m so that M is

covered by m + 1 open subsets each of which is contractible within M.
An equivalent definition (at least for the spaces we consider here) was given

by G. Whitehead (see [10]): Let Mm + l denote the (m + l)-fold product and
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let Tm + i(M) denote the subspace consisting of all (m + l)-tuples

(Xi, - —,xm +1) with at least one xt equal to a specified basepoint in M.
(Tm + 1(M) is usually called the "fat wedge".) In particular, T2(M) MvM;
two copies of M attached at the specified basepoint. Now let A : M -> Mm + l

denote the (m + l)-fold diagonal A(x) (x, x, • • *, x) and

j: Tm + l(M) Mm +1 the natural inclusion. Whitehead's definition is then:

cat(M) is the least integer m so that, up to homotopy, A factors through the

fat wedge; that is, there exists A':M-> rw + 1(M) with y A' — A.
The cuplength of M, cup (M), is the largest integer k so that there exist

X{ g Hni(M\ R), i 1, • • - k and a nontrivial cup-product

0 Xlx2 • - xk

The following result is well-known and is the basis of many calculations of
category:

Proposition, cup(M) < cat(M).

For a proof, see [10] for example. Other important properties of category
are:

(1) Category is an invariant of homotopy type.

(2) If Cf Y u/ CX is a mapping cone, then cat (Cf) < cat(Y) + 1.

(3) If X is a CIF-complex, then (by induction on skeleta and (2))
catCA") < dimX

(4) In fact, (3) may be generalized: If X is (r - l)-connected, then
cat(2Q ^ (dimX)/r.

The proofs of these properties are straightforward; see [10] for example.
In particular, we shall use (3) in our determination of the category of
nilmanifolds.

Examples

1. cat(W) 0 if and only if X is contractible.

2. cat (S") 1.

3. More generally, cat(X) 1 if and only if is a nontrivial co-H space.
4. cat(T") n (this follows from the proposition and property (3)

above).

We single out an example of interest in dynamical systems which, although
quite simple, does not seem to be well known among dynamicists. (The
analogue for Kähler manifolds is well known among topologists.)
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5. If M2n is a simply connected compact symplectic manifold, then

cat (M) n - dim(M). (First, observe that the volume form is not exact
2

since it represents a nontrivial fundamental class of M. Because con/n\ vol
(see [1], p. 165), the nondegenerate closed 2-form co cannot be exact either.
Hence, co" represents a nontrivial cup-product of length n in R-cohomology.
By property (4) above, cat (M) ^ (dimM)/2 n. Hence,

1

n < cup(M) < cat(M) < - dimM n
2

and the result follows.)

§2. Rational homotopy and category

The basic reference for this section is [3]. To each space X, Sullivan

functorially associated a commutative differential graded algebra (A(X), d) of
rational polynomial forms possessing the salient property that integration
defines a natural algebra isomorphism between H*{A(X), d) and H*(X; Q).
Furthermore, the cdga A(X) was shown to contain all the rational homotopy
information about X; information which may be gleaned from an associated

cdga minimal model of A(X).
A cdga (A, d) is minimal if (1) A AX, where X ®i>0Xi is a graded

Q-vector space and AX denotes that A is freely generated by X; that is,

AX Symmetric algebra (Xeven) (x) Exterior algebra (Xodd). (2) There is a

basis for X, {xa}a6/, so that if / is well ordered by <, then dx$ e A„<p(xa)
• A^p^û). That is, A is constructed by stages and the differentials of ßth

stage generators are decomposable in the generators of previous stages.

A minimal model for a space M is a minimal cdga A{M) and a cdga map
A(M) -> A(M) inducing an isomorphism in cohomology. The fundamental
theorem of rational homotopy theory is then (see [4] for example).

Theorem. Each space M has a minimal model A(M) and, furthermore,

for nilpotent spaces the stage by stage construction precisely mirrors the

rational Postnikov tower with the differential corresponding to the k-invariant.

Recall that a space M is nilpotent if its fundamental group tix{M) is a

nilpotent group and the natural action of nx(M) on nn(M) (see [10]) is a

nilpotent action (see [12]). In particular, any simply connected space or any
K(tc, 1) with 7i nilpotent is a nilpotent space. The theorem then says that, for
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a nilpotent space, the minimal model is a perfect reflection of the rational
homotopy type of the space (eg for / > 1, X1 Hom(7T/(M), Q), where

7t/(M) is the /th homotopy group of M). The minimal model A (M) is

therefore an algebraic version of the Q-localization of M. Indeed, a notion of
cdga homotopy may be described so that there is a categorical equivalence
between the homotopy categories of rational nilpotent spaces and minimal
cdga's.

Examples. (1) A(S2n + 1) A(x2n + i),dx 0.

(2) A(S2«) A(x2n,y4n_l),dy x2.

(3) A(C P(nj)A (x2,y2n + i)
(4) A(T") A(x\,xl---,xï),d 0.

In the next setion we will describe the minimal model of a nilmanifold in
terms of the structure of its defining nilpotent group.

In order to understand category in the framework of minimal models,
assume for the moment that cat (M) m. The Whitehead diagram

M ^ Mm + l

(*) A,v* î j
Tm +1 (M)

translates (via Sullivan's categorical equivalence) into a homotopy
commutative diagram of minimal cdga's,

AX <- (AX)®m + l

(**) p I £

AY
where A{M) AX, A(Mm + l) (AX)®m + l (since the model of a product is
the tensor product of the models), A is modelled by the (m + l)-fold multiplication

p and AT A(Tm + l(M)).
Now, however, we may make the following

Definition. The rational category of M (or A(M) AX), cat0(M), is
the least m so that (**) exists; that is, there exists p with p^ ^ p.

Observe that: (1) cat0(M) < cat(M) since any diagram (*) induces a
diagram (**). (2) If M is simply connected, then cat0(Af) cat(M0), where
M0 is the Q-localization of M. This follows since (*) itself localizes.
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The definition of cat0(M) would be of little use if this were its only
description. The passage from (*) to (**) simply transfers the difficult problem
of obtaining A' to an (almost) equally difficult problem of obtaining p.

However, by understanding the nature of AF= A(P + I (M)), a more
accessible criterion for cat0(M) may be developed. We first describe AT.

Proposition (2.2 of [3]). A minimal model for the fat wedge is given by
a minimal model 0: AT-* Q for the quotient cdga

Q - (AX)®m + l/(A+X)®m + l

where A+X consists of all elements of positive degree. Moreover, if
7i : (AX) ®m + l - Q is the projection, then any q: (AX)®m + l -* A Y with
(|)rj — 7i is homotopic to the induced map

(The existence of r| is a consequence of the minimality of (AX)®m + 1, the

fact that 0 induces an isomorphism of cohomology and cdga obstruction
theory. See [4] or [6].)

In some sense, the form of Q is exactly what one would expect viewing the

fat wedge as a spatial bound on the 4'form product" length (as opposed to
cuplength). The proof of the proposition relies on various technical results

involving A(Tm + l(M)).
Now let A>mX denote the differential ideal of AX having additive basis

the monomials xix • • • xik with k > m. Consider the projection

p: AX -> AX/A>mX and a minimal model 0: AZ -* AX/A>mX. As before

(for AT), minimal model theory provides a lift of p,p: AXAZ, with
§p p.

Say that AX is a retract of AX/A>mX if there exists a cdga map

r: AZ - AX with rp — \AX.
We are now in a position to give the rational homotopy criterion for

category. We give a proof in one direction and refer to [3] for the other. (Also,
we make use of the fact that a cohomology isomorphism Q:A~+B induces

bijections of cdga homotopy sets 0*: [A, A] -> [A,B] for any minimal A.)
With the notation above, we have the

Theorem. cat0(M) ^ m if and only if AX A(M) is a retract of
AX/A>mX.

Proof. We only prove the "if" part. Let r denote the retraction,
AZ AX, with rp — \AX- We have the following homotopy commutative

diagram (where p is the map induced by \x and p is a lift to models),
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In order to prove cat0(M) ^ m, we must find p: AT-» AX with - jr. We

can use the given retraction to do exactly this. Let p rp.
First, observe 0/?p — p\x \xn ~ — 0p£,. Because 0 is a cohomology

isomorphism, j?p — p^.
Now, p£ ^ rpÈ; - rp\i ~ lAx\x P and we are done.

Of course, cat0(M) is, in general, too hard to compute. However, the

criterion we have described opens up the possibility of defining weaker

invariants which are computable. In a sense, the point of this paper is to give

an exposition of these weaker invariants in the context of a specific problem
of interest to -'geometers".

Define e0(M) to be the least integer y so that p:AX^AX/A>sX
induces an injection in cohomology. (This is, in fact, equivalent to requiring
r: AZ -> AX to be only a linear retraction. The invariant e0(M) was first
defined by Toomer [9] in terms of the Milnor-Moore spectral sequence.)

Note that if r: AZ -» AX is a retraction, then /?* is injective and (since 0*
is an isomorphism) therefore so is /?*. Hence, we clearly have

e0(M) ^ cat0(M)

Moreover, when M is a nilpotent space (so that the full power of the minimal
model may be utilized) and a manifold (so that Poincaré duality may be

exploited), we can identify eQ{M) in the following manner:

Proposition. If Mn is a nilpotent manifold with fundamental class
x e Hn(M; Q), then e0{M) is the largest k such that x is represented
by a cocycle in A>kX.

Proof. Let e0(M) s and let k be defined by the stated property. If x is
represented by a cocycle in A>SX, then (for p: AX AX/A>sX)p*(i) 0
and /?* is therefore not injective. Hence, k ^ y.
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In order to show the reverse inequality s ^ k, we must show that, for
p : AX - AX/A > kX, p* is injective. Plainly, by Poincaré duality, p* is

injective if and only if /?*(x) ^ 0. Hence, we prove this.
Suppose p*{t) 0. Let t denote the representing cocycle in A>kX of the

fundamental class t. Let p{i) — x e AX/A>kX and consider x as an element
in A^kX. Now, /7*(x) 0, so there exists a e AX/A>kX with da x.
Consider a e A^kX as well and note that p(da) da x. Therefore, in
AX

da x + O where O e A>kX

Similarly, of course, x x + Q for Q e A>kX and we obtain,

x x + Q <ia-<f> + Q

with Q-Oe A>kX. But this means x is cohomologous to Q - O e A>kX,
contradicting the definition of k.

§3. Nilmanifolds

A nilmanifold M is the quotient of a nilpotent Lie group by a discrete

cocompact subgroup n. The description below follows [7].

It is well known that Nis diffeomorphic to some R" and, therefore, Mis
a K(n, 1). Furthermore, this entails the fact that n is a finitely generated

torsionfree nilpotent group.
On the algebraic side, there is a refinement of the upper central series of n,

n D n2 2 n3 D • • • d nn 2 1

with each 7C//tc/+i Z whose length is invariant and is called the rank of
7i. So, for Ti above, rank(71) n.

This description implies that any u e n has a decomposition

u ux{1 — - uxnn, where < un > nn, • • • < ut) 7i//7C/+1. The set {wi • • • un}

is called a Malcev basis for 71. Using this basis the multiplication in 71 takes

the form

u*nu?1 uynwp .(*.»

where

P;(*, J') ^ + i/(x,, • • • x;_,, j)
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Example.N Un(R),the group of upper diagonal matrices with l's on

the diagonal; n Un(Z). A Malcev basis is given by {uu | 1 ^ i < j ^ n\

where I + and

P ij(x,y)Xfj + yij+ £
i < k < j

Consider the central extension nn -* n n. The cocycle for the extension is

t„: n x n -> Z. Of course n is also finitely generated torsionfree with refined

upper central series,

Tln 7Cn Un n

Hence, rank (71) n - 1 and

Pi(x, y) p/((xr, 0), (y, 0)) - Xi + yf + tz(xi • • • *f~ 1, yx, • • • y/_1)

for i < n. Clearly, then, we may iterate this process and decompose n as n

central extensions of the form

Z G G

with cocycles xz e H2(G; Z) (with untwisted coefficients since the extension is

central).

This desription allows a geometric formulation:

in G H\7t; Z) s H2(K(n, 1); Z) s [tf(Ä, 1), K(Z, 2)]

by the usual identification of cohomology groups with sets of homotopy classes

into K(Z,mYs. Now, K(Z, 2) CP(oo), the classifying space for principal
^-bundles, so xn induces a bundle over K(n, 1),

S1 -+ K{7i, 1)

1

AT(tc, 1) ^ CP(oo)

The total space of the bundle is clearly K(n, 1) since the ensuing short exact

sequence of fundamental groups is classified by xn.
Now, because we can iterate the algebraic decomposition of 71, we obtain

an iterated sequence of principal S ^bundles classifed by the tz :
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S1 -> M
I

K(n, 1)

S1 - M„_, CP(oo)

I

i
S' -> M, ^ CP(oo)

I
* ^ CP(oo)

We can assume (by finite dimensionality) that each x/ has image in a finite
CP(n), so thus may be approximated by a smooth map. Hence, each Mj is a

compact manifold with

dim(My) dim(My_i) + 1

Thus, dim(M) rank(71) n.

The decomposition of M Ä"(7t, 1) into a tower of principal S1-bundles

is, in fact, the Postnikov decomposition of M with k-invariants the x,-. By the

fundamental theorem of rational homotopy theory, the minimal model has the

form,

with dxi X/, where x, is a cocycle representing the class x, e H2(Mi-X \ Z).
Note that A(M) is an exterior algebra because all generators are in degree 1.

Therefore, since dim M n, the only possibility for a cocycle representing the

fundamental class is X\ 'm'Xn. Hence, e0(M) n and this immediately
implies,

Proof of Theorem 1. n eQ(M) ^ cat0(M) < cat (M) ^ dim M

Example. Consider the 3-dimensional Heisenberg group U3(R) and mod

out by f/3(Z). The resulting Mis a 3-manifold obtained as a principal bundle,

§4. Category of nilmanifolds

A(Af) (A(^!, • • • x„), d) deg(x,j 1

s1 -> Af-> r2
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with classifying element (over the rationals) xy e H2(T2\ Q), where x and y
are one-dimensional generators. The minimal model of M is then given by

A(M) K(x, y, z) deg(a) deg(y) deg(z) 1

with dx 0 dy and dz xy. Additive generators for cohomology are then,

Hl:x,y
H2 : xz, yz (Massey products

H3 : zyx

Note that cup(M) 2, but cat(M) 3.

In some sense then, the proof of Theorem 1 is simply an observation that

the techniques of rational homotopy theory work particularly well for
nilmanifolds.

Problem. If n is not nilpotent, then a K(n, 1) is not a nilpotent space,

so the minimal model does not describe a 44rational type". Is it possible,

however, that enough information about a K(n, 1) is present in the model to
determine its category (in the compact case say)?

§5. Higher degree analogues

An analogue of the minimal model of a nilmanifold is one of the form,

(A(xi, • • • x„), d) degree(*/) odd

Such an algebra is known to satisfy rational Poincaré duality (see [5]) and to
have formal top dimension deg(x/). But, plainly, the same argument as

before applies to show that the 4'only" element in this exterior algebra which
can reach the stated dimension is X\ • • • xn. Hence (since this is the longest
product in A), the fundamental class is maximally represented by a product
of length n and

Lemma. e0(A) n.

Now, we may consider A as built up by adjoining odd generators one at
a time (with decomposable differential). Let AZ be a minimal cdga and y of
odd degree. Then

Proposition. (See Theorem 4.7 and Lemma 6.6 of [3].)

cat0(AZ ®Ay) < cat0(AZ) + 1
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Proof. Suppose cat0(AZ) m. Then AZ is a retract of AZ/A>mZ and

we see that AZ (x) Ay is a retract of AZ/A>mZ (x) Ay. Now, the maximal
product length of AZfA>mZ (x) Ay is m + 1 and this is sufficient to ensure

cat0(AZ (x) Ay) ^ m + 1.

Now, by induction, we see that cat0(A) ^ n (since for Xi of odd degree

cato(Axi) =1). Putting this together with the Lemma gives

Theorem 2. If A (A(xu • • • xn),d) with deg(xz) odd for
each i, then cat0(A) n.

This result may be applied, for example, to a manifold obtained as an
iterated principal bundle. That is, for compact Lie groups Gz, i I to N.

Mi Gi ; Mi is obtained from Mz_/ as a principal Gz-bundle over Mz_!.

M MN

Each Gi is, rationally, a product of rank(Gz) odd spheres, so the minimal
model of M has the form,

A(M) (A(*i, • • • xs), d)

with deg(xz) odd and 5 Yé^= \ rank(Gz).

Corollary, cat0(M) XlfLi rank(Gz).

Corollary. If M is an iterated principal bundle with fibres Gz,

then the number of critical points of any smooth function on M is bounded

below by ^/rank(G/) + 1.

Note that we have not determined cat (M), so the true effectiveness of
Lusternik-Schnirelmann theory may not have been exploited.

§6. Ganea's conjecture

The Ganea Conjecture states that, for a finite CW complex X,
cat(X x Sk) cat (A) + 1 for any sphere Sk. Although unproven in general,

various cases of the conjecture have been shown to be true. We add

nilmanifolds to that list:

Theorem. Ganea's Conjecture is true for nilmanifolds.
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Proof. Let M be a nilmanifold. Then

dimM + 1 <?o(M) + 1

e0(M x Sk) since e0 respects products

^ cat (M x Sk)

^ cat (M) + 1 Fox's inequality

dim M + 1

Hence all inequalities are equalities and cat (M x Sk) cat(M) +1.

Added in Proof. By using the equality e0(M) dim(M) and extending
the e0-invariant to maps, C. McCord and the author have given a proof of
the Arnold Conjecture for nilmanifolds (cf. C. McCord and J. Opera, Rational
Ljusternik-Schnirelmann Category and the Arnold Conjecture for
Nilmanifolds, preprint 1992). That is, any smooth 1-periodic Hamiltonian
system on a symplectic nilmanifold M has at least dim (M) + 1 contractible
1-periodic orbits.
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