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TOEPLITZ SEQUENCES, PAPERFOLDING,

TOWERS OF HANOI AND PROGRESSION-FREE SEQUENCES

OF INTEGERS

by Jean-Paul Allouche and Roland Bacher

Abstract. What is the relationship between folding a piece of paper,

moving disks in the classical tower of Hanoi algorithm and searching for

minimal sequences of integers having no p terms in arithmetic progression?

Our aim is to show how the Toeplitz sequences introduced by Jacobs and

Keane in [15] allow us to give (inter alia) a unified description of the preceding

problems. We give moreover some connections between Toeplitz sequences and

g-automatic sequences.

1. Toeplitz sequences

In [15], (see also [21]), Jacobs and Keane defined the notion of Toeplitz

sequence: they wanted to construct "explicit" sequences giving rise to strictly
ergodic systems. They proved moreover that the unique invariant measure
attached to such a sequence has a discrete rational spectrum. Roughly speaking

a Toeplitz sequence is obtained by successive insertions of periodic sequences
into the "holes" of a given periodic sequence, (a precise definition is given
below). This construction was inspired by a device used by Toeplitz [28] for
building explicitly almost periodic real functions. The method of Jacobs and
Keane has since been used by many people working in ergodic theory (see for
instance [29], [16] and [25], see also [14] and its impressive bibliography). We

now give the definition of a Toeplitz sequence (compare with [15], [16], [14]
and [29]):

Let T {ai, • • •, ar, co} be an alphabet (finite set) with a "marked" letter
("hole") co. If B (B(k))k>0 is a sequence with values in T, we define a
transformation TB:TN-*rN as follows: for any sequence C (C(k))k>0
with values in T, let h0 < hi < • • • be the increasing sequence (which might
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be finite or even empty) of those integers h for which C(h) co. Then one

defines

TbCU) CU) if CU) * CO

TBC(hk) B(k) for every k

Suppose we are now given a sequence of periodic sequences Bo,Bi9
• • •, Bk, • • • with values in T, and such that the zeroth value of each Bj is not
equal to co. Writing 7} instead of TB., we then define a sequence of periodic
sequences as follows:

A0 Bq

Ai TMo)
A2= T2{Ax) T2(TMO))

Ak+1 Tk+l(Ak) Tk+l(Tk( "(TMo)) ")) •

As k goes to infinity the sequence Ak tends to a limit A with values in
T - {co} (the existence of this limit, for the topology of simple convergence,
is left to the reader): such a sequence is called a Toeplitz sequence.

An alternative (equivalent) definition of a Toeplitz sequence is given in [29] :

A is a Toeplitz sequence if and only if one has

V«eN 3/?eN* Vft' ft(mod/0 A(n') A{n)

In what follows we first suppose that the set T is not necessarily a finite
set; second, we restrict ourselves to the case where the sequence B0,BU
has the following form: there exist a periodic sequence B with values in T such

that B(0) ^ co and a function / from T to T with /-1(<x>) {co}, such that

V* ^ 0 Bk fW(B)

where /(Ar) is the kth iterate of the function / and f{k){B) is the termwise

image of the sequence B under the resulting Toeplitz sequence

A lim Tk{---T2{T,(Bj)-'-)
k->

(where Tk TBk 7/W(b>)

will be called the Toeplitz transform of and denoted by Tt(B,f).
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Example. Let B be the sequence (Ocolco)00, and let / be defined on

{0, 1, co} by /(0) 1, /(1) 0, /(co) co, then one has:

B0 (OcolcoOcolco •••) B)

Bi (IcoOco IcoOco • • •

B2 Bo

Aq (OcolcoOcolco • • •)

A\ (OllcoOOlco • • •

A2 (0110001 co • • •

Note that if T is finite, and / one-to-one, such a sequence Tt(B,f) can

also be obtained by replacing B by a sequence of greater period and / by id.

We now give four examples of Toeplitz transforms in (apparently)

unrelated domains.

2. Paperfolding sequences and Toeplitz transforms

In [23] and [22] Prodinger and Urbanek study the Toeplitz transform of
((0co lco)00,id) and of ((0co lco IcoOco)00, id). They prove that these sequences
do not have arbitrarily long squares (a sequence A contains a square of length
2k if there exists an index j such that A(j + n) - A(j + n + k) for every n
between 0 and k — 1). Dekking already noticed in [10] that the first sequence
is nothing but the regular paperfolding sequence (see [9], [18], [20], [17]),
which is obtained by repeatedly folding a piece of paper, and we obtained
in [1] the same result as Prodinger and Urbanek for the general paperfolding
sequences. Let us give here two simple examples:

Proposition. Let B be the sequence B (Ocolco)00 and let f be

defined by /(0) 1, /(l) 0 and /(co) co. Then

the sequence Tt(B, id) is the regular paperfolding sequence,

the sequence Tt(B,f) is the alternate paperfolding sequence.
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Proof. It follows from instance from [18] (after replacing Ts by O's and

- l's by l's) that the regular paperfolding sequence R and the alternate paper-
folding sequence A are given by

(1 - (- l)m)
R(2k(2m + 1) - 1)

v
Vfc, m ^ 0

(1 - (- l)* + w)
A(2k(2m + 1) - 1) Vk9m^ 0

2

Let U and V be the sequences defined by

U= 7Y((0co lco)00,

V Tt((0(ûl(o)°°.
A straightforward computation gives

(l-(-l)") w ^U(2n) vn ^ 0
2

U{2n + 1) U{n) Vn^O

Hence

U(2k(2m+l)-l) U(2(2k~l(2m + 1) - 1) + 1)

(1 - (- IV")
U(2k~l(2m + 1) - 1) • • • U(2m) —

2

This proves that U R.
In the same way one has

(1 - (- 1)")
V(2n) —

2

V(2n + 1) 1 - V(n)

Hence

V(2k(2m + 1) - 1) V(2(2k~l(2m + 1) - 1) + 1) 1 - V(2k~l(2m + 1) - 1)

V(2m) if /riseven, | (l-(-l)^+m)
1 - V(2m) if /risodd,

and finally V A.



TOEPLITZ SEQUENCES 319

3. Iteration of continuous functions
AND TOEPLITZ TRANSFORMS

When iterating a unimodal (i.e. increasing then decreasing) and continuous

map of the interval [0,1], say 7^, depending on the parameter p, one knows

that, assuming certain properties of the map p - a Feigenbaum doubling
cascade phenomenon occurs (see [7] for instance): when the parameter
increases, the function has first an attractive fixed point for p0 ^ p < Pi,
then an attractive cycle of length 2 for pi < p < p2, then an attractive cycle

of length 4, There is a 44first'' value of the parameter Poo for which a

44chaotic" behaviour appears, and this value is the limit of the sequence

(p„)„. This sequence grows roughly like a constant term plus a geometric

progression Cn, where the constant C is universal, provided that the

functions F^ are smooth enough. This constant is called the Feigenbaum
constant.

The orbit of the point 1 under Fl^ can be coded by a universal binary
sequence A (even in cases where the Feigenbaum constant does not appear).
This sequence A (A(n)) is defined as 0 if 7^(1) is smaller than the point
where F{^ takes its maximum, and 1 if 7^(1) is larger than this value, and
does not depend on the family of functions (7^). Moreover it has been
noticed in [3] that the sequence A is related to the Prouhet-Thue-Morse
sequence C (see [6] and its bibliography) by

C(n + 1) £ A(j) modulo 2
0 < j ^ n

(Let us recall that C is the fixed point beginning by 0 of the 2-substitution
0 -> 01,1 -> 10.)

Actually as noticed in [24], A is the fixed point of the 2-substitution

1 -> 10, 0^11.

Proposition. Letf be defined by /(0) 1, /(l) 0, /(to) to,
then the sequence A is the Toeplitz transform of ((1©)",/).

Proof As the fixed point of the 2-substitution 1 10, 0-> 11, the
sequence A can be recursively defined by

A(2ri)1 A(2n + 1) 1 - A(n)

Remark. The relation between C and can also be written

A(n) C(n) + C(n + 1) modulo2
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If, instead of C one takes a "generalized" Morse sequence C", and if one
defines

A'(ri) C'(ri) + C'{n + 1) modulo2

then A' is also a Toeplitz sequence, as proved in [16].

4. Towers of Hanoi and Toeplitz sequences

The tower of Hanoi puzzle consists of three vertical pegs and of N circular
disks of different diameters stacked in decreasing order on the first peg. At
each step one may transfer the topmost disk from a peg to a different peg
according to the rule: no disk is allowed to be on a smaller one. The game
ends when all the disks are stacked on the second or third peg.

The sequence of moves for the classical (minimal) Hanoi tower algorithm
can be generated in a very easy way as it is 2-automatic (see [4] and section 6),
which essentially means that the kth move can be predicted by a machine with
bounded memory. More precisely number the pegs as I, II, III and define a

(respectively b, c) to be the move which takes the topmost disk from peg I
(respectively II, III) and puts it on peg II (respectively III, I). Let a, b, c be

the respective opposite moves. Then the sequence of moves for TV disks is the

prefix of length 2^-1 of an infinite sequence U which is 2-automatic.
Moreover the following proposition is proved in [4]:

Proposition. The infinite sequence of moves U is equal to the

Toeplitz transform of ((acbœcbacobâccù)00, id).
Note that, keeping the notations of [4], the sequence U is indexed by

1,2, • • • and not by 0, 1, 2, • • • as the sequences above.

5. Progression-free sequences and Toeplitz sequences

The question of finding a sequence of integers without arithmetic
progressions of given length has been intensively studied (see its history in [14]

and the included bibliography). In particular what is the "minimal" increasing

sequence having this property?
One knows that, if A: is a prime number, the minimal sequence of integers

without any arithmetic progression of k terms is exactly the increasing

sequence of the integers without the digit k - 1 in their base k expansion (cited
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in [11], [26] and [12]). But nothing is known for the case where k is not prime
(see [12]).

Let us define for every integer k ^ 3, (Uk(n)) as the increasing sequence

of the integers without the digit k - 1 in their basç-k expansion. It is not
difficult to obtain:

(*) Vy e [0, k - 2] Uk((k - 1 )n +j) kUk(n) + j
If one considers the sequence of first differences of, say U3, one obtains the

sequence:

1215121 14 1215121 •••

This sequence resembles somewhat the paper folding sequence, (except that it
takes infinitely many values), which gives the idea of the following easy
proposition:

Proposition. Let k be an integer greater than or equal to 3, define the

sequence Uk(n))by (*). LetDk(n)Uk(n + 1) - Uk(n). Finally
let gk be defined on Nu{w} by + 2 if x is in N
and gk(co)co.

Then

Dk=Tt(( l*-2co)",g„),
(see notations in paragraph 1).

Proof. From the definition of Uk, one has

Dk((k — 1)n+ j) 1 for every j in [0, k — 3] and every integer n

Dk((k - \)n + k - 2) kDk{n) - {k - 2) gk(Dk(n)) for every integer n

Remark. For a very curious occurrence of the sequence Uk see [19].

6. Miscellaneous questions

In this paragraph we first give some other examples of naturally occurring
Toeplitz sequences. Second we shall study the connections with automatic
sequences.

1) Among other examples of Toeplitz transforms let us give three natural
sequences :

— Let p be a prime number, and vp(n) be the highest power of p
dividing n. Let U(n) vp(n + 1), and let / be the function defined
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over N u {co} by /(x) x + 1 for every integer x and /(co) 00. Then:
U

— Define, for n ^ 1, Q(n) 1 if n is the sum of three squares, and

Q(n) 0 otherwise. Then Q 7Y((lllco 110co)°°, id).
— Let C(ri) be the van der Corput sequence (see [8]), used in the theory

of distribution modulo 1 and defined by:

if n £ bfn)!1, where bt is 0 or 1, then C(n) £ ^(w)2~/_1
i ^ 0 / > 0

Let V(n) C(n + 1) - C(n) be the difference sequence of C. Let finally h be

x - 1

defined on the rational numbers by h(x) and at co by h(co) co.
2

Then one has V Tt coj h j
The first and second proofs are left to the reader; a hint for the third proof

C(n) (1 + C{ri))
is that C(2n) —— and C(2n + 1) —

2 2

2) The interested reader can find in [27] a beautiful continued fraction
expansion for \j/(l) where i|/ is the Carlitz exponential function for F2[T\, and

he will certainly recognize a Toeplitz transform hidden in this expansion.

3) Actually all sequences given so far are either ^-automatic (see [6] or [2])

or q-regular (see [5]). Let us recall that a sequence (U(n)) is said to be

^-automatic if its ^-kernel (i.e. the set of subsequences n U(qkn + r) of the

sequence U, where k ^ 0 and 0 ^ r ^ qk — \) is finite. A sequence U with
values in a noetherian ring R is said to be g-regular if its ^-kernel spans an
i?-module of finite type.

If one takes the regular paperfolding sequence A, it is not hard to check

that ist 2-kernel is finite and equal to {A, (Ol)00, (O) 00, (1) 00 }, hence the

sequence A is 2-automatic.

In which case does a periodic sequence B with values in a finite alphabet
give rise to an automatic Toeplitz transform? We give the following answer

to this question:

Theorem. Let B be a periodic sequence ofperiod T with values in

T {c?i, a2i - - - ,ar, co}, such that B{0) ^ co. Denote by d the

cardinality of the set {he [0, T— 1] | B(h) co}. If d ^ 1 and d
divides T, then Tt(B, id) is (T/d)-automatic.
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Proof. Let A Tt(B, id). Denote by h0 < hx < h2 < ' — the strictly

increasing sequence of the integers to which B assigns co. Let

h0 < hi < - - < hd-1 be the values of hj which belong to [0, T- 1]. It
readily follows from the definition of A that A can be recursively defined by

Vn $ {h0, hu •••} A(n) B(n)

Vn^O, A(hn) A(n)

Moreover it is not hard to check that

Vn^ 0 Vy e [0, d- 1] hdn+j hj + Tn

Hence

V« ^ 0 Vy e [0, d - 1] Va e [0, d- 1] - {h0, hu • • % hd-i}

^ (A, + 7>z) ^4 +i) ^ (du + y)
^4 (a 4- 7>z) 5(a + Tn) 5(a)

Now let us define the set of sequences S with values in T - {co} by: U is an
element of S if and only if for every y 0, 1, * » % d - 1, the sequence
n U(dn +j) is either constant (hence the constant is an element of T - {co}),
or of the form n - A (dn + k) for some k k{j) e [0, d - 1]. Notice that the
set S is finite as it contains at most (Card T - 1 + d)d elements. Let e T/d.
To prove that the e-kernel of the sequence A is finite, it suffices to prove that
the set S is stable under the maps (X(n)) - (X(en + r)) for every r in [0, e - 1]

(note that the sequences n A (qkn + r), k ^ 0, 0 ^ r ^ qk - 1 are obtained
from the sequence n -> A(n) by applying finitely many such maps, and that
the sequence A itself belongs to S).

So let us take a sequence X in the set S9 and an element r in [0, e - 1].
Let W(n) X(en+ r). To prove that W is in 5, one computes W(dn + y) for
every y in [0,d-l]: W(dn -hj) X(e(dn +j) + r) X(d(en) + ej + r),
(note that ej + r ^ e(d— 1) + e — 1 T — 1). Define a and b by ej + r

ad + b, with b in [0, d- 1], (hence a is in [0, e - 1]). One has

W(dn +j) X(den + ej + r) X(d(en + a) + b)

As X belongs to S, the sequence (X(dn + b)) is either constant or equal to the
sequence (A(dn + c)) for a certain c in [0, d - 1]. Hence (X(d(en + a) + b))
is either constant or equal to the sequence (A(d(en + a) + c))) (.4 (7« + ad
+ c)). But in turn the sequence (A (Tn + ad + c)) is either constant (if ad + c
is not one of the A/s), or equal to the sequence (A (Tn + Aw)) (A(dn + «))
(if ad + c hU9 hence u ^ d - 1 because ad + c ^ T - 1).
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Finally one has (W{dn + j)) (X(den + ej + r)) (X(d(en + a) + b)) is

either constant or equal to the sequence (A(dn + w)), hence W belongs to S,

which concludes the proof.

4) One can notice that the definition of Tt(B, id) can be rewritten without
supposing that B is periodic. One can then ask whether the Toeplitz transform
of an automatic sequence is still automatic (see [1] for a particular case):

Proposition. Let B be a (non necessarily periodic) sequence on the

alphabet T such that the set of h for which B(h) co is exactly the set

{qn + b\ n^ 0}, where q and b are two natural numbers {q ^ 2 and
0 <b < q).

Then Tt(B, id) is q-automatic if and only if B is itself q-automatic.

If the set B l(co) is not of the previous kind, the result need not hold.

Proof. Let A Tt(B, id). Then, as usual,

Moreover B(qn + b) co.

If A is ^-automatic, so are the sequences (A(qn +j)), hence so are all the

sequences (B(qn + j)) for j in [0, q - 1] - {£}; but the sequence (B(qn + b))
is constant, hence ^-automatic. Finally all the sequences (B(qn+j)) are

^-automatic for j in [0, q - 1], and this implies the #-automaticity of the

sequence B itself.

If B is ^-automatic, let K be its ^-kernel (remember this is the set of
subsequences {n - B(qkn + r); k ^ 0, 0 ^ r ^ qk - 1}). K is finite. It is

clear that the ^-kernel of A is included in K u {A}, hence also finite, thus A
is a ^-automatic sequence.

Finally we give an example of a 2-automatic sequence which does not
satisfy the condition on £-1(a>)> and for which Tt(B, id) is not 2-automatic.
Indeed define B by:

V« $ {qk + b ; k ^ 0}

V« ^ 0

A(n) B(n)

A(qn + b) A(n)

From the first relation one has

vy [0, q— 1] - {b} + j) B(qn

B(2") =ö) V« ^ 1,

B(k) =1 if k is odd,

B(k) =0 if A: is even and not in {2, 4, 8, 16, • • •}.
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One easily computes

B(2n) co

B(2n) 0

B(2n + 1) 1

if n e {1, 2, 4, 8, * • •},

B(4n + 2) co

B(4n + 2) 0

B(4n) B(2n)

B(8n + 2) B(4n + 2)

B(8n + 6) 0

otherwise,

V« ^ 0,

Vn ^ 0,

if n 0,

V« ^ 1,

V n ^ 0,

V« ^ 0.

Hence the sequence B is 2-automatic (its kernel contains 5 elements). Note that

A Tt(B, id) satisfies

If A were a 2-automatic sequence, it is well known that the sequence A(2n)
would be ultimately periodic; hence from the second relation the sequence A
itself would be ultimately periodic. Taking j large enough, and looking at

A(2J + 1), ^4 (2^ + 2), • • • ,A(2j+l - 1), one sees that A ends ultimately by
010101 •• • (or by 101010 •••, which is the same!). But for a huge odd

number u one has A(2U) A(u) 1, and ^4(2" + 1) 1, which yields the

desired contradiction.

Remark. A recent paper studies the ergodic properties of the generalized

Rudin-Shapiro sequences (in the sense of [6]) using the Toeplitz device: A
criterion for Toeplitz flows to be topologically isomorphic and applications,
J. Kwiatkowski and Y. Lacroix, preprint, 1991.

Acknowledgements. This work was done while the first author was

visiting the Université de Genève, supported by a grant of the Fonds National
de la Recherche Scientifique. The first author wants to thank all the members
of the Math. Department, especially P. de la Harpe and M. Kervaire for many
interesting discussions, and T. Vust for helpful suggestions.

A(n) 1 if n is odd,

A(2n) A(n) Vn ^ 1,

A(n) 0 if n is even and not in {2, 4, 8, • • •}
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