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30 J. OPREA

5. If M2n is a simply connected compact symplectic manifold, then

cat (M) n - dim(M). (First, observe that the volume form is not exact
2

since it represents a nontrivial fundamental class of M. Because con/n\ vol
(see [1], p. 165), the nondegenerate closed 2-form co cannot be exact either.
Hence, co" represents a nontrivial cup-product of length n in R-cohomology.
By property (4) above, cat (M) ^ (dimM)/2 n. Hence,

1

n < cup(M) < cat(M) < - dimM n
2

and the result follows.)

§2. Rational homotopy and category

The basic reference for this section is [3]. To each space X, Sullivan

functorially associated a commutative differential graded algebra (A(X), d) of
rational polynomial forms possessing the salient property that integration
defines a natural algebra isomorphism between H*{A(X), d) and H*(X; Q).
Furthermore, the cdga A(X) was shown to contain all the rational homotopy
information about X; information which may be gleaned from an associated

cdga minimal model of A(X).
A cdga (A, d) is minimal if (1) A AX, where X ®i>0Xi is a graded

Q-vector space and AX denotes that A is freely generated by X; that is,

AX Symmetric algebra (Xeven) (x) Exterior algebra (Xodd). (2) There is a

basis for X, {xa}a6/, so that if / is well ordered by <, then dx$ e A„<p(xa)
• A^p^û). That is, A is constructed by stages and the differentials of ßth

stage generators are decomposable in the generators of previous stages.

A minimal model for a space M is a minimal cdga A{M) and a cdga map
A(M) -> A(M) inducing an isomorphism in cohomology. The fundamental
theorem of rational homotopy theory is then (see [4] for example).

Theorem. Each space M has a minimal model A(M) and, furthermore,

for nilpotent spaces the stage by stage construction precisely mirrors the

rational Postnikov tower with the differential corresponding to the k-invariant.

Recall that a space M is nilpotent if its fundamental group tix{M) is a

nilpotent group and the natural action of nx(M) on nn(M) (see [10]) is a

nilpotent action (see [12]). In particular, any simply connected space or any
K(tc, 1) with 7i nilpotent is a nilpotent space. The theorem then says that, for



THE CATEGORY OF NILMANIFOLDS 31

a nilpotent space, the minimal model is a perfect reflection of the rational
homotopy type of the space (eg for / > 1, X1 Hom(7T/(M), Q), where

7t/(M) is the /th homotopy group of M). The minimal model A (M) is

therefore an algebraic version of the Q-localization of M. Indeed, a notion of
cdga homotopy may be described so that there is a categorical equivalence
between the homotopy categories of rational nilpotent spaces and minimal
cdga's.

Examples. (1) A(S2n + 1) A(x2n + i),dx 0.

(2) A(S2«) A(x2n,y4n_l),dy x2.

(3) A(C P(nj)A (x2,y2n + i)
(4) A(T") A(x\,xl---,xï),d 0.

In the next setion we will describe the minimal model of a nilmanifold in
terms of the structure of its defining nilpotent group.

In order to understand category in the framework of minimal models,
assume for the moment that cat (M) m. The Whitehead diagram

M ^ Mm + l

(*) A,v* î j
Tm +1 (M)

translates (via Sullivan's categorical equivalence) into a homotopy
commutative diagram of minimal cdga's,

AX <- (AX)®m + l

(**) p I £

AY
where A{M) AX, A(Mm + l) (AX)®m + l (since the model of a product is
the tensor product of the models), A is modelled by the (m + l)-fold multiplication

p and AT A(Tm + l(M)).
Now, however, we may make the following

Definition. The rational category of M (or A(M) AX), cat0(M), is
the least m so that (**) exists; that is, there exists p with p^ ^ p.

Observe that: (1) cat0(M) < cat(M) since any diagram (*) induces a
diagram (**). (2) If M is simply connected, then cat0(Af) cat(M0), where
M0 is the Q-localization of M. This follows since (*) itself localizes.
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The definition of cat0(M) would be of little use if this were its only
description. The passage from (*) to (**) simply transfers the difficult problem
of obtaining A' to an (almost) equally difficult problem of obtaining p.

However, by understanding the nature of AF= A(P + I (M)), a more
accessible criterion for cat0(M) may be developed. We first describe AT.

Proposition (2.2 of [3]). A minimal model for the fat wedge is given by
a minimal model 0: AT-* Q for the quotient cdga

Q - (AX)®m + l/(A+X)®m + l

where A+X consists of all elements of positive degree. Moreover, if
7i : (AX) ®m + l - Q is the projection, then any q: (AX)®m + l -* A Y with
(|)rj — 7i is homotopic to the induced map

(The existence of r| is a consequence of the minimality of (AX)®m + 1, the

fact that 0 induces an isomorphism of cohomology and cdga obstruction
theory. See [4] or [6].)

In some sense, the form of Q is exactly what one would expect viewing the

fat wedge as a spatial bound on the 4'form product" length (as opposed to
cuplength). The proof of the proposition relies on various technical results

involving A(Tm + l(M)).
Now let A>mX denote the differential ideal of AX having additive basis

the monomials xix • • • xik with k > m. Consider the projection

p: AX -> AX/A>mX and a minimal model 0: AZ -* AX/A>mX. As before

(for AT), minimal model theory provides a lift of p,p: AXAZ, with
§p p.

Say that AX is a retract of AX/A>mX if there exists a cdga map

r: AZ - AX with rp — \AX.
We are now in a position to give the rational homotopy criterion for

category. We give a proof in one direction and refer to [3] for the other. (Also,
we make use of the fact that a cohomology isomorphism Q:A~+B induces

bijections of cdga homotopy sets 0*: [A, A] -> [A,B] for any minimal A.)
With the notation above, we have the

Theorem. cat0(M) ^ m if and only if AX A(M) is a retract of
AX/A>mX.

Proof. We only prove the "if" part. Let r denote the retraction,
AZ AX, with rp — \AX- We have the following homotopy commutative

diagram (where p is the map induced by \x and p is a lift to models),
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In order to prove cat0(M) ^ m, we must find p: AT-» AX with - jr. We

can use the given retraction to do exactly this. Let p rp.
First, observe 0/?p — p\x \xn ~ — 0p£,. Because 0 is a cohomology

isomorphism, j?p — p^.
Now, p£ ^ rpÈ; - rp\i ~ lAx\x P and we are done.

Of course, cat0(M) is, in general, too hard to compute. However, the

criterion we have described opens up the possibility of defining weaker

invariants which are computable. In a sense, the point of this paper is to give

an exposition of these weaker invariants in the context of a specific problem
of interest to -'geometers".

Define e0(M) to be the least integer y so that p:AX^AX/A>sX
induces an injection in cohomology. (This is, in fact, equivalent to requiring
r: AZ -> AX to be only a linear retraction. The invariant e0(M) was first
defined by Toomer [9] in terms of the Milnor-Moore spectral sequence.)

Note that if r: AZ -» AX is a retraction, then /?* is injective and (since 0*
is an isomorphism) therefore so is /?*. Hence, we clearly have

e0(M) ^ cat0(M)

Moreover, when M is a nilpotent space (so that the full power of the minimal
model may be utilized) and a manifold (so that Poincaré duality may be

exploited), we can identify eQ{M) in the following manner:

Proposition. If Mn is a nilpotent manifold with fundamental class
x e Hn(M; Q), then e0{M) is the largest k such that x is represented
by a cocycle in A>kX.

Proof. Let e0(M) s and let k be defined by the stated property. If x is
represented by a cocycle in A>SX, then (for p: AX AX/A>sX)p*(i) 0
and /?* is therefore not injective. Hence, k ^ y.
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In order to show the reverse inequality s ^ k, we must show that, for
p : AX - AX/A > kX, p* is injective. Plainly, by Poincaré duality, p* is

injective if and only if /?*(x) ^ 0. Hence, we prove this.
Suppose p*{t) 0. Let t denote the representing cocycle in A>kX of the

fundamental class t. Let p{i) — x e AX/A>kX and consider x as an element
in A^kX. Now, /7*(x) 0, so there exists a e AX/A>kX with da x.
Consider a e A^kX as well and note that p(da) da x. Therefore, in
AX

da x + O where O e A>kX

Similarly, of course, x x + Q for Q e A>kX and we obtain,

x x + Q <ia-<f> + Q

with Q-Oe A>kX. But this means x is cohomologous to Q - O e A>kX,
contradicting the definition of k.

§3. Nilmanifolds

A nilmanifold M is the quotient of a nilpotent Lie group by a discrete

cocompact subgroup n. The description below follows [7].

It is well known that Nis diffeomorphic to some R" and, therefore, Mis
a K(n, 1). Furthermore, this entails the fact that n is a finitely generated

torsionfree nilpotent group.
On the algebraic side, there is a refinement of the upper central series of n,

n D n2 2 n3 D • • • d nn 2 1

with each 7C//tc/+i Z whose length is invariant and is called the rank of
7i. So, for Ti above, rank(71) n.

This description implies that any u e n has a decomposition

u ux{1 — - uxnn, where < un > nn, • • • < ut) 7i//7C/+1. The set {wi • • • un}

is called a Malcev basis for 71. Using this basis the multiplication in 71 takes

the form

u*nu?1 uynwp .(*.»

where

P;(*, J') ^ + i/(x,, • • • x;_,, j)
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