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than Sym («) (see Corollary 5). The simplest example is the group of order 8

generated by (1, 2, 3 ,4) and (1, 3) having index 3 in Sym(4).
The object of this note is to show how the subgroup of Sym(n) generated

by a transposition and one other element can be determined. In particular we

will define a graph associated with a cycle o and a transposition x. (In fact
the graph will be defined for a somewhat more general situation.) An easily

computable condition on o and x (or on the graph) will determine if the group
generated by o and x is the full symmetric group. To show that a wide variety
of groups can be generated by a transposition and a cycle, we mention three

cases. Let o (1,2,3,4,5,6,7,8) and x one of the 28 transpositions in
Sym (8). Then the subgroup of Sym (8) generated by o and x is all of Sym (8),
a group of order 40 320, for 16 choices of x; is a group of order 1152 for
8 choices of x and a group of order 64 for 4 choices of x.

Once the case of an «-cycle and a transposition has been done, it is fairly
straight forward to do the general case. We determine the group generated by
a transposition and any other element. As an application of these ideas we
show that the theorem on Galois groups mentioned above remains valid for
polynomials of degree n not divisible by 2 or 3.

1. A GRAPH FOR A SUBGROUP CONTAINING A TRANSPOSITION

We consider a subgroup of Sym(«) that contains a transposition

x {a, b). We will define a graph depending on and x and use it to prove
the existence of a normal subgroup of whose structure can be described

explicitly.

Let T x) be the graph whose vertex set is V {1, 2, • ••,«} on
which P^acts as permutations. An edge of F is a two element subset {i,j}
of vertices such that the transposition (ij) is conjugate to x in Thus {i,j}
is an edge of T if and only if there is some element ri e atif such that

rrni-1 (f,j) •

For any transposition (r, s) we have

(1) y\{r,5)ti(n(/-),Ti(s))

so it follows that {i,j} is an edge of T if and only if {i,j} {r| (a), r|(£)} for
some r| e The action of on the vertices of T permutes the edges and

so is part of the automorphism group of T. The notion of a path and
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connected vertices will be used to examine the structure of We remind the

reader of the relevant concepts associated with the graph.

A path in T is a sequence of edges such that adjacent terms of the sequence
have a vertex in common. Two vertices u and v are connected if there is a path
in T with u and v vertices of some edges in the path. A component of T is

a maximal subgraph in which any two vertices are connected by a path. It is

easy to see that connectedness is an equivalence relation on the set of vertices

and so the vertex set V is partitioned into disjoint subsets V\, • • •, Vt maximal

with the property that two vertices in a subset are connected. Then T is

a disjoint union

r Ti u r2 u • • • u r,, t ^ 1,

with each T; a component of F.

We now show that each component is a complete graph on its vertices; i.e.

every pair of vertices of T/ lie on an edge. Let / and j be two vertices
connected by a path in F. Then there are transpositions

Xi (j, Q\) t2 (ci\, af) •, Tr (ar -1, Qf) j
* * *, x^ — (ßk _ i, y)

in 2? and each is conjugate to x. Then each of the following transpositions
is in and is also conjugate to x:

t2^iT2 - (/, a2)

x3(/, a2)t3 « (/, a3)

t4(i, a3)x4 (/, a4)

tk(i, ak- i)Tk (ij)
Thus (i,j) e and there is an edge of T connecting i and j. In other words
this argument shows that contains every transposition of Sym {n) that
exchanges a pair of connected vertices. This gives the information needed in
the following statement:

Theorem 1. Let be a subgroup of the symmetric group Sym (n);
assume contains a transposition x. Let the components of the graph
F(^» x) be rlt • • •, T, and let Vt denote the set of vertices of Tz. Let
S be the subgroup of generated by all the conjugates of x in
Then S is a normal subgroup of ^ and is isomorphic to the directproduct
S1 x • • • x St where St is the symmetric group of all permutations of Vh
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Assume is transitive on {1, 2, • • •, n}. Then the groups Su - * •, St

are isomorphic and S is isomorphic to Sym(Ar)w, the direct product of
t copies of Sym (A:) where tk n and k > 1. The elements of
permute the components Tj, * • •, T, and only the elements of S leave all
the Tz fixed (as sets). Thus %?/S is isomorphic to a transitive subgroup of
Sym (t).

Proof. The statement that S is a normal subgroup of ^follows at once
because the set of generators of S is closed under conjugation by elements of
Pf7. The conjugate class of t consists of transpositions corresponding one-to-
one with the edges of T. Let 5/ be the subgroup generated by the transpositions

corresponding to edges of Tz. Since we have seen that Tz has an edge

joining every pair of vertices, Sz- contains every transposition permuting two
elements of Vh Thus S, is the full symmetric group Sym(F/) of permutations
of Vj. Since the Sj permute disjoint sets of vertices, the group S is the direct
product of the groups Su • • •, St.

Now suppose that is transitive on V. For any pair of indices i and j
and verticies u e Tz and v e Ty, there is an element r| e a#* with v\(u) v. It
follows that p(Tz) Ty, r|(F/) Vj and riS/Tj ~1 ~ Sj. So any two of the

groups Sj, • - •, St are conjugate, hence isomorphic. If k is the number of
vertices of T, (for any i) then

S Si x • • • x St Sym (A:) x • • • x Sym (A:) Sym (k)(t)

Because k is the number of vertices in each Tj, and since Tz contains at least

one edge, Tz must contain at least two vertices. Thus k ^ 2.

We have already seen that permutes the set {Tx, • • - TJ of components;

the elements in S leave each Tz fixed because Sj is generated by
transpositions which leave every Tz fixed. We will now prove that the only
elements of that leave every Tz fixed are the elements of S. Suppose

rI e ^and r| (F/) Tz for 1 < / < t. Then rj5zri-1 Sz ; conjugation by r|

induces an automorphism of St. A great deal is known about the

automorphisms of symmetric groups. An automorphism of Sym (A:) is a conjugation
by an element of Sym (A:) except possibly when k 6 (see [4, Theorem 7.4,

page 133]). An automorphism of Sym(6) is either a conjugation by an element

of Sym (6) or it has the property that every transposition is mapped to the

product of three transpositions (see [2]). In the present case, the automorphism
X^T[Xr{~1 must send transpositions to transpositions. Hence there is an
element yz e Sz such that riXri-1 yz_1Xyz for all X e Si. The elements of
different Sz commute with each other so it follows that
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Yi • • • YAIÀTTHYI X

for every X e S,- and for every /. The element a Yi * * * Y/H commutes with

every element of S; in particular a commutes with every transposition in S.

In view of Equation (1), an element centralizing each transposition must leave

every edge of T fixed. There are only two possibilities for an automorphism
of T that fixes all edges. If there is a path in T with two or more edges, then

every edge lies on a path with two or more edges (because the components are

complete graphs and two components are isomorphic). In this case the only
automorphism fixing every edge is the identity on the vertices. Thus in this

case Ji • - - y/H e and r| e S.

In the remaining case there are no paths of length two in T and so every
Sj is of order 2. The element a leaves every edge fixed and so either fixes or
permutes the two vertices of T, If S/ ((u, v)) and if a moves u then a must
interchange u and v because edges are preserved. It follows that (u, v) a fixes

u and v. By repeating this argument for each component of T we get a
multiplied by certain transpositions in S leaves all vertices fixed and hence is

the identity. It follows that r| is the product of the transpositions in certain
of the Sj. Thus in this case we also have r\ e S and the only elements

of fixing the sets Vt are the elements of S. Thus the group of permutations

of the T/ induced by the action of is the group 2Xf/S. So 2/tf/S is

isomorphic to a subgroup of Sym(0- Note that if 2F acts transitively on
{1,2, • • -, n}, then W/S acts transitively on {Tu • • TJ.

The graph T t) can be used to give an easy criterion to determine when
— Sym(fl).

Corollary 1. The subgroup of Sym(n) generated by a subgroup
containing a transposition t is all of Sym(fl) if and only if the graph

T t) is connected.

Proof If \ t) is connected then ^contains every transposition
(/, j) because the graph is a complete graph containing every possible edge,
as shown earlier. Since every permutation in Sym(fl) is a product of transpositions,

and all the transpositions are in PT, it follows that Sym(/i).
Conversely if Sym (n), then every transposition in is conjugate to t
and the graph t) contains every possible edge; in particular the graph
is connected.

The graph T provides a tool that enables us to give a quick proof of a
special case of a theorem first proved by C. Jordan.
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Corollary 2 (C. Jordan [3]). A primitive subgroup of Sym(ri)
containing a transposition is all of Sym (ft).

Proof. Let be a primitive subgroup of Sym (n) and x a transposition
in Then permutes the components T/ of x) and so the vertex
sets Vi of the T, are permuted by The primitivity of implies that the
set {1, 2, •••,«} can be partitioned into disjoint subsets permuted by only
if each subset has order one or there is just one subset of order n. Since the
vertex set of T/ has more than one element, there is only one component and

Sym (ft) by Corollary 1.

2. An application to Galois theory

We extend the theorem mentioned in the introduction replacing the

condition that the degree of the polynomial be a prime greater than 3 by the

condition that the degree of the polynomial be divisible only by primes greater
than 3.

Theorem 2. Left f{x) be a polynomial of degree n with rational
coefficients and irreducible over the rational field. Assume that f(x) has

exactly n - 2 real roots. If n is divisible only by primes greater than 3

then the Galois group of the splitting field of f{x) is not solvable and

f (x) is not solvable by radicals.

Proof. Let be the Galois group of f(x) over the rational field. We

view ^ as a permutation group on the n roots of f. Then complex conjugation,

x, is a transposition in of the two nonreal roots. Since /(x) is

irreducible, P^is transitive on the set of n roots. By theorem 1, contains

a subgroup isomorphic to the direct product of t copies of Sym (k) where

tk ft. Since k is a divisor of n and k > 1, the hypothesis on the divisors of
ft implies k ^ 5. Thus Sym(/:) is not a solvable group and ^is not solvable

as it contains a nonsolvable subgroup. Thus /(x) is not solvable by radicals.

3. Two GENERATOR SUBGROUPS OF Sym (ft)

Next we apply Theorem 1 to determine the subgroup of Sym (ft) generated

by a transposition and one other element. We first consider the case in which
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