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that we can reduce our search to a finite number of vertices (P, p) of T We

focus attention on one of these cases. We start to explore TP>P. If we find
more than b0 vertices, we know Z is not complete. Otherwise we find a

generating set of circuits in TPj p and check for each of these that a consistent

horosphere can be constructed.

7. Algorithmic aspects

We will now look more closely at the algorithmic aspects of Poincaré's
Theorem. We wish to produce a mechanical procedure which takes as input
a finite number of finite-sided convex polyhedra in E" or S* or H", together
with a finite set of face-pairings, and which outputs "Yes" or "No" to the

question of whether these polyhedra and face-pairings give a tessellation of the

appropriate space. In the case that the answer is "Yes", it also outputs a

presentation for the group of symmetries of this tessellation with the given
finite union of finite polyhedra as a fundamental domain.

What kind of mathematical model of a computing machine is necessary in
order to carry out the procedure described in the preceding pages? It is not
appropriate to use a Turing machine model. A Turing machine is not capable

of taking as input a list of real numbers and coming out with the answer "Yes"
or "No". We need to be able to handle real numbers not as sequences of bits

but as entities. We need to be able to compare two real numbers for equality
or inequality in a one-step operation, and likewise for addition and

multiplication and division of real numbers.
Such a mathematical model has been described in [BSS89]. Their model

is devoted to the study of polynomial and rational maps, and it is assumed

that computation of a polynomial can be carried out in a single step. In most

computations in hyperbolic or spherical geometry, trigonometric and

hyperbolic trigonometric functions are likely to arise, and so it seems at first
sight that a model of computation able to carry out only polynomial operations
would not be relevant. However, in the case of Poincaré's Theorem it happens

that the computation can be expressed in polynomial terms. Since the BSS

scheme has been thought out and developed far enough to be a reasonable tool,
we use it.

However, for more general computations in geometry, it seems that it
would be more satisfactory to have a computational model with a library of
functions, satisfying certain axioms. It might, for example, be assumed that

any of the functions in the library could be computed with complete accuracy
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in a single step. We put this forward in the hope of encouraging someone to

develop such an approach.
Let us go through the steps of the computation to see what kind of

operations are necessary. We need to start by making a decision as to how to

represent the input data. We first need to decide how to represent E", Sn and

H". It is convenient in each case to embed the space in R" + 1. In order to be

able to change basis easily, we will describe the situation in a general manner.

Suppose we are given a positive definite symmetric (n + 1) x (n + 1) real

matrix Ms defining a positive definite inner product on Rn+1. We define Sn

to be the set of vectors v of unit length with respect to this inner product. We

will frequently represent a point in Sn by a non-zero vector which does not
have unit length; conceptually this can be normalized, but computationally we

will not normalize. The reason for avoiding normalization is that BSS

machines are capable of polynomial operations, but not of taking square roots.
We take E" to be an affine subspace of R" + 1 which does not contain the

origin. We can think of the subspace as specified by a non-zero linear map
X : R" + 1 -> R as follows: E* {v : X(v) 1}. As in the case of Sn, we

assume that R" + 1 has a positive definite inner product, given by a matrix
Me. We will often represent a point in E" by an element u e Rn + l, such that
X(u) > 0, without supposing X(u) 1. Multiplying by a positive scalar, we
find a vector in EL

If we are given a real (n + 1) x (n + 1) symmetric matrix MH with n
positive eigenvalues and one negative eigenvalue, we obtain a non-degenerate
indefinite inner product on R" + 1 of type (n, 1). We define H" to be one sheet

of the hyperboloid {v e R" + 1
: (d, u) - 1}. We specify such a sheet by

fixing a linear map X : R" + 1 -> R, such that the sheet lies in the half-space
X > 0. A vector u such that < u, v > <0 and X(u) > 0 represents a well-defined
point of H", obtained by multipling by a suitable positive scalar. However
this scalar cannot be computed by our BSS machine, since the computation
involves taking a square root.

If X" is any of the three spaces, we specify a codimension-one
X-subspace by means of a single linear equation, and a general X-subspace
by means of a finite number of linear equations (with no constant term). The
condition on the subspace in the hyperbolic case is that the coefficient vectors
of the linear equations define a positive definite subspace with respect
to Mh. In the euclidean case the condition is that the coefficient vector of X,
the linear map defining E", is not linearly dependent on the set of coefficient
vectors of the linear inequalities. In the spherical case there are no conditions.
Such a subspace is therefore determined by a finite list of real numbers.
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Face-pairings are represented by matrices. A half-space is determined by a

linear inequality (with no constant term).
Each finite collection of linear equalities and inequalities (satisfying

appropriate conditions to give a codimension-one subspace or a codimension-

zero half-space) defines either the nullset or some /-dimensional convex
polyhedron in X". If there are exactly n - i linearly independent equalities
and if each of the half-spaces is essential, the defining collection of equalities
and inequalities is minimal. If i n, there is a unique minimal set of defining
half-spaces (see Proposition 2.5). If i < n, the number of inequalities in a

minimal collection is equal to the number of codimension-one faces, but
neither the equalities nor the inequalities are uniquely determined. Any
collection of equalities and inequalities defining the /-dimensional polyhedron
can be transformed into a minimal collection by changing some of the

inequalities to equalities and then omitting some of the equalities and

inequalities. (For example the two conditions p ^ 0 and p ^ 0 are equivalent
to the one condition p 0.)

Theorem 7.1 (BSS polyhedron computation). There is a BSS program
which carries out the following computation. We input E71, H" or S",
represented by a real non-singular symmetric (n + 1) x (n +1) matrix
Me Mh or Ms, and a linear map X : R*+1 -» R. We also input a finite
set of linear equalities and inequalities defining codimension-one subspaces

and codimension-zero half-spaces in E", Hn or Sn respectively. The

output from the program is the dimension i of the convex polyhedron
defined by the intersection of these subspaces and half-spaces, the
combinatorial structure of its faces, for each face a minimal subset of the defining
equalities and inequalities (with some of the defining inequalites converted

to equalities). The program also outputs for each face F an element

xF e R" 1 representing a point in the relative interior of the face.

Proof of 7.1. If n «=* 0 or n - 1, the result is clearly true. Inductively we

assume the result is known for dimensions less than n.

If the collection of equalities and inequalities input includes one or more

equality, then the result follows by induction on n. To see this, we transform

by a matrix which changes one of the equalities to xn + x 0. This changes the

matrix of the inner product and the coordinates of X. In the hyperbolic case

we next check that (0, ...,0, 1) is a positive vector (otherwise the plane

xn + l 0 is not a plane in hyperbolic space). In the euclidean case, we check

that X does not have the form cxn + x 0 in the new coordinates. (If these

checks fail, then the input data was inconsistent). We then apply the BSS
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program which has been inductively constructed. So we may asume that our

input consists of inequalities only.
We now assume that we have j inequalities, and that we have constructed

a program which gives the required output for any collection of j — 1

inequalities satisfying the induction assumptions. Let PCX" be the

convex polyhedron defined by the first j — 1 inequalities. Let / ^ 0 be the

y-th inequality. We first construct a point xf representing a point yf e X",
such that f(xf) f(yf) 0.

One of the following situations must hold, and we want to construct a BSS

program to find which.

Condition 7.2 (situation for (P, /)).
(a) P C {/ 0}. In the other cases, we assume that P is not a subset of

{/=0}.
(b) PC {/> 0}.

(c) PC {/^0} and the codimension-one subspace f 0 meets P.

(d) P meets / > 0 and / < 0.

(e) P C {/ < 0} and the codimension-one subspace / 0 meets P.

(f) P C {/ < 0}.

Assuming we know which case we are in, the inductive proof deals with all

cases except Condition 7.2(d), when we need also to compute the new face

structure and to find a representative for a point in the relative interior of each

new face.

We proceed as follows, assuming that we are in case Condition 7.2(d).
If P has no faces, then P X". The new polyhedron has two cells, namely

/ ^ 0 and / 0. It is easy to find representatives for points in these two faces.

(Solving linear equations can be done by row operations.)
If P does have faces, we first tackle the same problem for each proper face.

Let F be a face and let S be the smallest X-subspace containing F. If the plane

/ 0 meets S, then either / 0 contains S, which we can check by a linear
independence computation (row operations), or / 0 meets S in a

codimension-one subspace of S. In both cases we can treat the problem by
induction on n. If the plane / 0 does not meet S, then take the point
xF e Int(F) given by our induction, and evaluate f{xF). The value is either
negative, in which case we must be in case 7.2(f) for the pair (F, /), or it is

positive, in which case we must be in case 7.2(b) for (P, /).
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The construction of the point in the relative interior of {/ ^ 0} n P in
case 7.2(d) is as follows. By induction we find a point in the relative interior
of {/ 0} n P. This means that all the equalities required for the definition
of P are satisfied for this point, and all the inequalities required are satisfied
as strict inequalities. We can therefore move the point a little so that the

equalities and the strict inequalities continue to hold. In addition we move it
in a direction away from {/ 0} so as to increase /.

Now let us see how to recognize which case we have for (P, /). Using our
minimal set of equalities and inequalities for P, a linear independence check

(row operations) tells us whether or not we are in case 7.2(a).
We are in case 7.2(b) for (P, /), if firstly for each proper face F of P, (F, /)

is in case 7.2(b), which shows that / 0 does not meet 6P, and secondly we
check that that xf P. Case 7.2(f) is treated in the same way.

We are in case 7.2(c) if the following three conditions are satisfied: firstly
for each proper face F of P we have case 7.2(a) or case 7.2(b) or case 7.2(c)
for (F, /), secondly we are in case 7.2(a) for some face F, and thirdly
f(Xp) > 0 for the point xP already constructed in the relative interior of P.

Similarly for the case 7.2(e), except that the signs are changed.
To see if we are in case 7.2(d), we change coordinates so that / 0

becomes the plane xn + x - 0, and then look at the intersection P' of this

plane with P. We take a point in the relative interior of P' and check whether

it is in the relative interior of P.
To complete the discussion of the algorithmic approach, suppose we are

given a finite set g? of finite-sided polyhedra and maps R : Jr(^f) - Jr(^)
and A : Jr(.^3) Isom(X"), where Jr(.^) is the set of codimension-one
faces of the polyhedra in There is obviously no problem in checking

Pairing (.^, F, A), Finite(^) and Connected^, R). To check Cyclic(^, F, A),
we need to be more explicit about the form in which the face-pairings are given.
We will assume each face-pairing is given by an (n + 1) x (n + 1) matrix of
real numbers which preserves the appropriate structure. Then we can check

Cyclic(#, F, A) by multiplying such matrices together. The fact that a certain

product is the identity on a codimension-two face can be checked by a linear

independence calculation, applied to the coefficient vectors of the planes

defining the X-subspace spanned by the face. The fact that the angle of
rotation has the form 2n/m can be checked by seeing whether the m-th power
of a certain group element is the identity. We can see approximately which
values of m to use by means of floating point arithmetic.

Finally we indicate circumstances under which it seems that a Turing
machine could do all the relevant checks. Suppose we are given a finite set of
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matrices each of which is an isometry of X", and such that each entry is an

algebraic number. We can hold the algebraic numbers in the computer by

holding the coefficients of its irreducible polynomial, together with a floating
point approximation to the number. Suppose we are also given a finite set of
finite-sided polyhedra, given approximately using floating point numbers,
together with face-pairings each of which is equal to one of our given matrices.
We can then check the condition Cyclic(^, R, A) precisely, using integer
arithmetic, by checking on a certain product of face-pairings. (We can use

floating point arithmetic to see which words in the face-pairings need to have
checks performed.)

8. Special cases

One case of Poincaré's Theorem which is often used is the case where there
is a single element of and all face-pairings are reflections. In that case

completeness is a consequence of Lemma 5.4, provided the other axioms are
satisfied. This enables a number of important examples to be constructed.

As a minor point, we note that it enables us to construct infinitely generated
fuchsian groups with an arbitrary subset of the positive integers being the set

of exponents of maximal cyclic subgroups. These and other applications of
Poincaré's Theorem are well-known.

Poincaré's Theorem works in an especially simple way in dimension two.
In this dimension, a face-pairing is called an edge-pairing. The following result
is essentially due to de Rham [dR71].

Theorem 8.1 (dimension two). Suppose we have a finite set ïA of
finite-sided polygons in H2 and an edge-pairing of the boundary
edges satisfying Pairing{tP, R, A), Connand
Then the quotient Q of UPe^Pby the edge-pairing is a two-
dimensional hyperbolic orbifold which is obtained from a complete orbifold
with geodesic boundary by removing the compact boundary components. The
hyperbolic structure on Q is induced in an obvious way from the hyperbolic
structure on the hyperbolic polygons used to define it. The group G
generated by the edge-pairings in the manner described in Definition 4.2 is
discrete. If all the polygons are compact, then Q is a compact orbifold
without boundary. (But it may have mirrors.)

Remark 8.2. The main feature of this result is that for the two-
dimensional case it describes the quotient Q even when this is not complete.
(For the conditions under which Q is complete the reader is referred to
Lemma 5.4 and Theorem 6.3.)
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