2. Coding theory

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 40 (1994)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: **25.05.2024**

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

where $\hat{f} = (x_0 + 1)^2 + (f_1 + x_0 f_2)^2$. Of course, all coefficients of \hat{f} are nonnegative, as desired.

Finally, we may assume that all monomials in f are square-free, by removing any square in any monomial if necessary. The values assumed by f on binary points will not be altered, for if u, v are monomials, then $u^2v - v$ takes the constant value 0 on $\{1, -1\}^n$.

2. Coding theory

To fix the notation and terminology, we briefly recall a few notions from coding theory. For more information, see [MS].

Consider the vector space \mathbf{F}_2^N with its canonical basis fixed. The *(Hamming) weight* |z| of a vector $z \in \mathbf{F}_2^N$ is the number of non-zero coordinates of z. A binary linear code (or code, for short) is a vector subspace C of \mathbf{F}_2^N . The integer N is called the *length* of C. The weight enumerator of C is the polynomial

$$P_C(T) = \sum_{z \in C} T^{|z|}.$$

A generator matrix for C is a $k \times N$ matrix G over \mathbb{F}_2 whose rows span C. A parity check matrix for C is an $(N-k) \times N$ matrix H over \mathbb{F}_2 such that

$$C = \{ z \in \mathbf{F}_2^N, \quad H \cdot z^\top = 0 \}$$
.

Equivalently, C is the kernel of the map $h: \mathbb{F}_2^N \to \mathbb{F}_2^{N-k}$ whose matrix in the standard bases is H. The *dual* of C is the space

$$C^{\perp} = \{ y \in \mathbf{F}_2^N \mid y \cdot z = 0 \text{ for all } z \in C \},$$

where $y \cdot z$ denotes the usual dot product of y and z with value in \mathbf{F}_2 . We have:

$$\dim C^{\perp} = N - \dim C$$
, and $C^{\perp \perp} = C$.

A binary matrix H is a generator matrix for C if and only if it is a parity check matrix for C^{\perp} . Finally, the weight enumerator of C determines the weight enumerator of its dual C^{\perp} by the *MacWilliams identity* [M]:

$$P_{C^{\perp}}(T) = \frac{1}{|C|} \cdot (1+T)^N \cdot P_C\left(\frac{1-T}{1+T}\right) .$$