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196 A. CONSTANTIN AND B. KOLEV

The endpoints of y determine on C2 an arc ô disjoint from J° and such

that ô n J 05. We note that there is an at most countable family of such

arcs y, noted (yi)ieN and that diam(yi) -> 0 as / oo. The boundary of / is

the simple closed curve obtained from C2 when substituting the arcs yt for the

arcs 5/ and / is a topological disc by the Jordan-Schoenflies theorem.

The following remarkable property of periodic homeomorphisms which is

a direct consequence of 2.4 is true in a more general setting than the plane
R2, namely in topological manifolds of dimension 2 because of its local
nature. We will give it in that context since we will use it for the disc and the

sphere, repeatedly in this article.

Lemma 2.5. Let f : S -* S be a periodic homeomorphism of an

arbitrary 2-dimensional topological manifold S and let x e Fix{f), afixed
point of f. Then for any neighbourhood N of x, there exists a

topological disc Ax such that:

1. Ax C N,

2. Ax is a neighbourhood of x,

3. /(Ax) Ax.

Proof of 2.5. We can first assume that N and its image under /, f(N),
are contained in some local chart U homeomorphic with R2 and will continue

to call x and //the corresponding point and set in R2. Let Dx be an euclidean

disc of centre x and radius rj where rj > 0 is chosen such that fk(Dx) C N
for k - 0,J, n - 1 and let Cx be its boundary. Let Ax be the closure

of the component of the invariant set C\nkZlfk(D°x) which contains x.
By 2.4, Ax is a topological disc which is invariant under / (components are

sent to components by a homeomorphism) and satisfies the three assertions

of the lemma.

Remark. The boundary yx of Ax, which is an invariant simple closed

curve, is contained in \JnkZ]Qfk(Cx).

3. Periodic Homeomorphisms of the Disc

Theorem 3.1. Let f :D2-+D2 be a periodic homeomorphism. Then

there exists r e 0(2) and a homeomorphism h :D2^>D2 such that

f hrh~l.
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Before attacking the proof of the result above, let us first look at a special

case of Theorem 3.1, namely:

Proposition 3.2. Let f:D2-+ D2 be a periodic homeomorphism such

that f /qD2 Id. Then f Id.

Proof of 3.2. Let d be an arbitrary diameter of D2 with endpoints A
and B and let A be one of the two connected components of D2 - d.

The set:

n

e=n /'(a»)
i 1

is invariant under / and the closure of each of its components is a

topological disc.

A

Figure 2

Let AB be the arc of circle joining A to B in the boundary of A.
Since fl(AB) AB for all /, there exists a component of E, say /°, whose

closure J contains AB (see Figure 2). By 2.4, J is a topological disc which is
invariant under /.

We can write dJ AB u 8 where 8 is an /-invariant, simple arc with
endpoints A and B such that:

n

5 C U /< (G?)

i I

Since f{A) A and /(B) B,f/8Id.Letï be a point of the arc 8.
There exists ie72}such that xef'(d) and f"~'(x) e so
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that ô d and f /d Id. Since the diameter d was chosen arbitrarily, we
have shown that / Id on D2.

From now on, / will denote a periodic homeomorphism of the disc of
period n with n > 1. In the sequel of this section, we prove Theorem 3.1, first
investigating the structure of the fixed point set of /.

Proposition 3.3. Suppose f : D2 d2 is a periodic homeomorphism
of period n (n> 1); then:

L if f is orientation-preserving, Fix(f) is reduced to a single point
which is not on the boundary of D2 and for 1 ^ ^ n - 1,

Fix{p) Fix(f);
2. if f is orientation-reversing, f2 Id and Fix(f) is a simple arc

which divides D2 into two topological discs which are permuted by f.
Proof of 3.3. Suppose first that / is orientation-preserving. By

Brouwer fixed point theorem, / has at least one fixed point. Since f /qDi
is orientation-preserving and periodic, / has no fixed point on 9D2.
Otherwise / would be the the identity map on 9D2 and using 3.2, / would
be the identity map on the whole disc which is excluded by hypothesis.
Therefore, / has at least one fixed point in D2\dD2 which we can assume

to be, up to conjugacy, O, the center of the disc.

Let A D2\{0}. A is a half open annulus which is invariant under /.
Suppose now that an iterate /' of / has a fixed point x0 e A. Let x0 be a lift
of Xq to the universal covering space Ä of A and G be the lift of /' such

that G(x0) Xq. Gn is a lift of Id which fixes one point, thus Gn Id. In
particular, G/qà is a periodic and orientation preserving homeomorphism of
the line, thus G Id on 9^4. Therefore, /' Id on 9D2 and, according
to 3.2, /' Id on the whole disc, so that / is a multiple of n according to
the definition of n.

Suppose now that / is orientation-reversing. In that case, / has exactly two
fixed points on 9D2 which we denote by A and B and f2 is the identity map
on 9D2, therefore, by 3.2, f2 Id on D2

We assert that Fix(f) is connected. For if not, we can find two nonempty
compact sets Kx and K2 such that

Fix(f) K{ uK2, K! o K2 — 0

If A e Ki and B e K2) it is then possible to construct a simple arc y in

D2\{Kx\jK2) which intersect 9D2 only on its endpoints and which
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separates A from B. Using the same argument as the one used in the proof
of 3.2, we can show the existence of an /-invariant simple arc:

n - 1

S C U /'(y) C D2\Fix(f)
i o

which separates A from B. But / must then have a fixed point on 5 which

gives a contradiction. Therefore we can suppose that one of the two compact
sets, say Kx is contained in D2\dD2. In that case, it is possible to construct
a simple closed curve c C D2\dD2 which does not meet K{ u K2 and such

that the topological disc it bounds contains at least one point of K]. Using
similar arguments as those of the proof of 2.5, we can find an /-invariant
topological disc in D2\dD2 whose boundary contains no fixed point. This
gives again a contradiction, since any simple closed curve which bounds an
invariant disc has exactly two fixed points of /.

The previous arguments applied to an arbitrarily small invariant
topological disc around a fixed point given by 2.5 shows that Fix(f) is also

locally connected and by 2.2, Fix(f) is therefore pathwise connected. In view
of 2.1, there exists a simple arc y in Fix(f) which joins A and B. This arc
divides D2 into two topological discs Ai and A2 by the Jordan-Schoenflies
theorem. D2\y is obviously invariant under / and the two arcs on 6D2
delimited by A and B are permuted by /, therefore f(A{) A2, /(A2) A}
and Fix(f) is reduced to y.

Proof of 3.1. Suppose first that / is orientation-preserving. By 3.3,
we can suppose that Fix(f) {O}, the center of the disc. Since f/QD2
is a periodic homeomorphism of period n, the rotation number of
//a£>2, p(//9£>2) k/n, where k and n are coprime. We are going to
prove that / is conjugate to a rotation by angle 2kn/n around the origin.
Without loss of generality, we can assume that k 1. Indeed, suppose
the result holds if p(//8D2) \/n. Then, if k > 1 we replace / by fJ where

je N is such that jk=\(modn). Then p(fj/dD2) l/n, thus p is
conjugate to a rotation by angle 2n/n around the origin and since (p)k /,
it follows that / is conjugate to a rotation by angle 2kn/n.

Let us consider the quotient space D2/f where two points are identified if
they belong to the same orbit under /. D2/f is endowed with the quotient
topology. It is a compact and pathwise connected metric space, the metric
being defined by:

d(n(x),7i(jO) inf
0 ^ h, k ^ n - 1

where k : D2 D2/f is the canonical projection.
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By 2.1, we can find a simple arc y from n(0) to an arbitrary point
on n(dD2). Since the group of homeomorphisms generated by / acts

freely on D2 except at O it follows that n : D2 - D2/f is a regular branched

covering (see [10] page 49). Therefore, 7u_1(y) is the union of n disjoint
simple arcs (with the exception of their common endpoint Ö)

Yo > Yi > y« _ i, which divide D2 into n disjoint sectors, A0, Aj, An_ i.
The hypothesis p(//W) 1 /n implies that yz- /'(y0).

Figure 3

Let h be a homeomorphism between A0 and the fundamental region
in D2 of the rotation by angle 2n/n around the origin, and such that

h\y rh\yQ. We can extend h to a homeomorphism of D2 by defining /z/^.
as rlhf~l, r being the rotation of centre O and angle 2n/n. It is easy to
verify that h is an homeomorphism of D2 and that / h~lrh.

Suppose now that / is orientation-reversing. By 3.3, Fix(f) is a simple

arc y which divides D2 into two topological discs Ai and A2 which are

permuted by /. Let h be a homeomorphism between A! and the upper half
disc D\. We define h on A2 in the following way:

h(y) Sh/&lf(y), y e A2

where S is the reflection about the x-axis. It is then easy to verify that h is

a homeomorphism of D2 and this gives a conjugacy between / and S.

Remark. Using 3.1, it can also be shown that any periodic
homeomorphism of the annulus is topologically equivalent to an euclidean isometry

(modulo a flip of the boundary if it is not boundary-preserving).
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