2. Discussion of Définition \$A_1\$

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 41 (1995)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
25.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

PROPOSITION 1.4. Let G be of type \mathscr{F}. If $\chi(G) \neq 0$ then $\chi_{1}(G ; R)$ is trivial for any coefficient ring R.

Proof. The center, $Z(G)$, is trivial, by [Got, Theorem IV.1]. Indeed, a short proof of this fact is included below as Proposition 2.4.

We end this section with the promised fourth definition of $\chi_{1}(X, R)$ in terms of the transfer maps of [BG], [D D_{3}. For $\gamma \in \Gamma$, consider $\Phi^{\gamma}: X \times S^{1} \rightarrow X$ as above. This defines $\bar{\Phi}^{\gamma}: X \times S^{1} \rightarrow X \times S^{1}$ by $\bar{\Phi}^{\gamma}(x, z)=\left(\Phi^{\gamma}(x, z), z\right)$ which is a fiber map with respect to the trivial fibration $X \rightarrow X \times S^{1} \rightarrow S^{1}$. There is an associated S-map (the transfer) $\tau\left(\bar{\Phi}^{\gamma}\right): \Sigma^{\infty} S_{+}^{1} \rightarrow \Sigma^{\infty}\left(X \times S^{1}\right)_{+}$. Here, the subscript " + " indicates union with a disjoint basepoint and " Σ^{∞} " denotes the suspension spectrum of a space. The S-map $\tau(\bar{F})$ induces a homomorphism in homology $\tau\left(\bar{\Phi}^{\gamma}\right)_{*}: H_{*}\left(S^{1} ; R\right) \rightarrow H_{*}\left(X \times S^{1} ; R\right)$.

Theorem 1.5. Let R be a field. Then $\chi_{1}(X ; R)=-p_{*} \tau\left(\bar{\Phi}^{\gamma}\right)_{*}\left(\left[S^{1}\right]\right)$.
This is proved in $\S 10$.

2. Discussion of Definition A_{1}

To explain where Definition A_{1} comes from, we must review some basic facts about Hochschild homology. Then we show that the formula in Definition A_{1} is well-defined and homotopy invariant.

Let R be a commutative ground ring and let S be an associative R-algebra with unit. If M is an $S-S$ bimodule (i.e. a left and right S-module satisfying $\left(s_{1} m\right) s_{2}=s_{1}\left(m s_{2}\right)$ for all $m \in M$, and $\left.s_{1}, s_{2} \in S\right)$, the Hochschild chain complex $\left\{C_{*}(S, M), d\right\}$ consists of $C_{n}(S, M)=S^{\otimes n} \otimes M$ where $S^{\otimes n}$ is the tensor product of n copies of S and

$$
\begin{aligned}
d\left(s_{1} \otimes \cdots \otimes s_{n} \otimes m\right) & =s_{2} \otimes \cdots \otimes s_{n} \otimes m s_{1} \\
& +\sum_{i=1}^{n-1}(-1)^{i} s_{1} \otimes \cdots \otimes s_{i} s_{i+1} \otimes \cdots \otimes s_{n} \otimes m \\
& +(-1)^{n} s_{1} \otimes \cdots \otimes s_{n-1} \otimes s_{n} m
\end{aligned}
$$

The tensor products are taken over R. The n-th homology of this complex is the n-th Hochschild homology of S with coefficient bimodule M. It is denoted by $H H_{n}(S, M)$. If $M=S$ with the standard $S-S$ bimodule structure then we write $H H_{n}(S)$ for $H H_{n}(S, M)$.

We will be concerned mainly with $H H_{1}$ and $H H_{0}$ which are computed from

$$
\begin{aligned}
& \cdots \rightarrow S \otimes S \otimes M \xrightarrow{d} \\
& s_{1} \otimes s_{2} \otimes m \xrightarrow{d} M \\
& s_{2} \otimes m s_{1}-s_{1} s_{2} \otimes m+s_{1} \otimes s_{2} m \\
& s \otimes m \xrightarrow{\mapsto} m s-s m
\end{aligned}
$$

Next, we consider traces in Hochschild homology. If A is a square matrix over M, we interpret its trace $\sum_{i} A_{i i}$ as an element of M (i.e. as a Hochschild 0 -cycle). The corresponding homology class is denoted by $T_{0}(A) \in H H_{0}(S, M)$. If $A^{i}, i=1, \ldots, n$, are $q_{i} \times q_{i+1}$ matrices over S and B is a $q_{n+1} \times q_{1}$ matrix over M, we define $A^{1} \otimes \cdots \otimes A^{n} \otimes B$ to be the $q_{1} \times q_{1}$ matrix with entries in the R-module $S^{\otimes n} \otimes M$ given by

$$
\left(A^{1} \otimes \cdots \otimes A^{n} \otimes B\right)_{i j}=\sum_{k_{2}, \ldots, k_{n+1}} A_{i, k_{2}}^{1} \otimes A_{k_{2}, k_{3}}^{2} \otimes \cdots \otimes A_{k_{n}, k_{n+1}}^{n} \otimes B_{k_{n+1}, j} .
$$

The trace of $A^{1} \otimes \cdots \otimes A^{n} \otimes B$, written $\operatorname{trace}\left(A^{1} \otimes \cdots \otimes A^{n} \otimes B\right)$, is

$$
\sum_{k_{1}, k_{2}, \ldots, k_{n+1}} A_{k_{1}, k_{2}}^{1} \otimes A_{k_{2}, k_{3}}^{2} \otimes \cdots \otimes A_{k_{n}, k_{n+1}}^{n} \otimes B_{k_{n+1}, k_{1}} .
$$

which we interpret as a Hochschild n-chain. Observe that the 1 -chain $\operatorname{trace}(A \otimes B)$ is a cycle if and only if $\operatorname{trace}(A B)=\operatorname{trace}(B A)$, in which case we denote its homology class by $T_{1}(A \otimes B) \in H H_{1}(S, M)$. In the application below, S will be a groupring over the ground ring R and $M=S$.

We will use the notation G_{1} for the set of conjugacy classes of a group G. The partition of G into the union of its conjugacy classes induces a direct sum decomposition of $H H_{*}(\mathbf{Z} G)$ as follows: each generating chain $c=g_{1} \otimes \cdots \otimes g_{n} \otimes m$ can be written in canonical form as $g_{1} \otimes \cdots \otimes g_{n} \otimes g_{n}^{-1} \cdots g_{1}^{-1} g$ where we think of $g=g_{1} \cdots g_{n} m \in G$ as "marking" the conjugacy class $C(g)$. All the generating chains occurring in the boundary $d(c)$ are easily seen to have markers in $C(g)$ when put into canonical form. For $C \in G_{1}$ let $C_{*}(\mathbf{Z} G)_{C}$ be the subgroup of $C_{*}(\mathbf{Z} G)$ generated by those generating chains whose markers lie in C. The decomposition $\mathbf{Z} G \cong \oplus_{C \in G_{1}} \mathbf{Z} C$ as a direct sum of abelian groups determines a decomposition of chain complexes $C_{*}(\mathbf{Z} G) \cong \oplus_{C \in G_{1}} C_{*}(\mathbf{Z} G)_{C}$. There results a natural isomorphism $H H_{*}(\mathbf{Z} G) \cong \oplus_{C \in G_{1}} H H_{*}(\mathbf{Z} G)_{C}$ where the summand $H H_{*}(\mathbf{Z} G)_{C}$ corresponds to the homology classes of Hochschild cycles marked by the elements of C. We call this summand the C-component. Given any $\mathbf{Z} G-\mathbf{Z} G$ bimodule N let \bar{N} be the left $\mathbf{Z} G$ module whose underlying abelian group is N and whose left module structure is given by $g m=g \cdot m \cdot g^{-1}$. There is a natural isomorphism $H H_{*}(\mathbf{Z} G, N) \cong H_{*}(G, N)$
which is induced from an isomorphism of the Hochschild complex to the bar complex for computing group homology; see [I, Theorem 1.d]. The decomposition $\overline{\mathbf{Z} G} \cong \oplus_{C \in G_{1}} \mathbf{Z} C$ is a direct sum of left $\mathbf{Z} G$ modules, inducing a direct sum decomposition $H_{*}(G, \overline{\mathbf{Z} G}) \cong \oplus C_{C \in G_{1}} H_{*}(G, \mathbf{Z} C)$. Choosing representatives $g_{C} \in C$ we have an isomorphism of left $\mathbf{Z} G$ modules $\mathbf{Z} C \cong \mathbf{Z}\left(G / Z\left(g_{C}\right)\right)$ where $Z(h)=\left\{g \in G \mid h=g h g^{-1}\right\}$ denotes the centralizer of $h \in G$. Since $H_{*}\left(G, \mathbf{Z}\left(G / Z\left(g_{C}\right)\right)\right)$ is naturally isomorphic to $H_{*}\left(Z\left(g_{C}\right)\right)$, we obtain a natural isomorphism $H H_{*}(\mathbf{Z} G)$ $\cong \oplus{ }_{C \in G_{1}} H_{*}\left(Z\left(g_{C}\right)\right)$; furthermore, $H H_{*}(\mathbf{Z} G)_{C}$ corresponds to the summand $H_{*}\left(Z\left(g_{C}\right)\right)$ under this identification. In particular $H H_{0}(\mathbf{Z} G) \cong \mathbf{Z} G_{1}$, the free abelian group generated by the conjugacy classes, and $H H_{1}(\mathbf{Z} G) \cong \oplus_{c \in G_{1}} H_{1}\left(Z\left(g_{C}\right)\right)$, the direct sum of the abelianizations of the centralizers. Indeed, if $g \otimes g^{-1} g_{C}$ is a cycle then its homology class in $H H_{1}(\mathbf{Z} G)$ corresponds to $\{g\} \in H_{1}\left(Z\left(g_{C}\right)\right)$.

The augmentation $\varepsilon: \mathbf{Z} G \rightarrow \mathbf{Z}$ can be viewed as a morphism of $\mathbf{Z} G-\mathbf{Z} G$ bimodules, where \mathbf{Z} is given the trivial bimodule structure, or as a morphism $\varepsilon: \overline{\mathbf{Z} G} \rightarrow \overline{\mathbf{Z}}$ of left $\mathbf{Z} G$-modules. Then there is an induced chain map $C_{*}(\mathbf{Z} G, \mathbf{Z} G) \xrightarrow{\varepsilon} C_{*}(\mathbf{Z} G, \mathbf{Z})$ and a commutative diagram:

where the vertical arrows are isomorphisms.
Recall the abelianization homomorphism $A: \mathbf{Z} G \rightarrow G_{\mathrm{ab}}=H_{1}(X)=H_{1}(G)$ used in Definition A_{1}.

Proposition 2.1. If $\sum_{i} c_{i} \otimes n_{i} \in C_{1}(\mathbf{Z} G, \mathbf{Z}) \quad$ is a Hochschild 1-cycle representing $z \in H H_{1}(\mathbf{Z} G, \mathbf{Z})$, where $c_{i} \in \mathbf{Z} G$ and $n_{i} \in \mathbf{Z}$, then $\mu(z)=\sum_{i} A\left(c_{i} n_{i}\right) \in H_{1}(G)$.

Proof. This follows from the fact that $d: \mathbf{Z} G \otimes \mathbf{Z} G \otimes \mathbf{Z} \rightarrow \mathbf{Z} G \otimes \mathbf{Z}$ becomes $g_{1} \otimes g_{2} \otimes 1 \mapsto\left(g_{2}-g_{1} g_{2}+g_{1}\right) \otimes 1$. One easily shows that the map $g \otimes 1 \mapsto A(g)$ induces μ.

With notation as in $\S 1$, let $\tilde{D}_{k}^{\gamma}: C_{k}(\tilde{X}) \rightarrow C_{k+1}(\tilde{X})$ be the lift of D_{k}^{γ}. Write $\tilde{\partial}=\oplus_{k} \tilde{\mathrm{a}}_{k}, \quad \tilde{D}^{\gamma}=\oplus(-1)^{k+1} \tilde{D}_{k}^{\gamma}$ and $\tilde{I}=\oplus_{k}(-1)^{k} \mathrm{id}_{k}$ (viewed as matrices). The chain homotopy relation becomes $\tilde{D}^{\gamma} \widetilde{\partial}-\tilde{\partial} \tilde{D}^{\gamma}$ $=\tilde{I}\left(1-\eta_{\#}(\gamma)^{-1}\right)$ [Explanation: the minus sign occurs on the left because of the sign convention built into the matrix \tilde{D}^{γ}; the right hand side is
thus because the 0 -end of the homotopy F^{γ} is lifted to the identity, while the 1 -end is lifted to the covering translation corresponding to $\eta_{\#}(\gamma)$; the inversion occurs because we have G acting on the right.]

Proposition 2.2. $\chi_{1}(X ; R)(\gamma)$, as given in Definition A_{1}, is independent of the choice of the cellular homotopy F^{γ} representing γ.

Proof. It is enough to consider the case $R=\mathbf{Z}$. We must show that if $F_{1}^{\gamma} \simeq F_{2}^{\gamma}: X \times I \rightarrow X$ rel $X \times\{0,1\}$, with corresponding chain homotopies $D_{*}^{1, \gamma}$ and $D_{*}^{2, \gamma}$, then $A\left(\operatorname{trace}\left(\tilde{\partial} D^{1, \gamma}\right)\right)=A\left(\operatorname{trace}\left(\tilde{\partial} D^{2, \gamma}\right)\right)$.

There is a degree 2 chain homotopy $\tilde{E}_{k}: C_{k}(\tilde{X}) \rightarrow C_{k+2}(\tilde{X})$ such that $\tilde{E}_{k-1} \tilde{\partial}_{k}-\tilde{\partial}_{k+2} \tilde{E}_{k}=\tilde{D}_{1, k}^{\gamma}-\tilde{D}_{2, k}^{\gamma}$. Write $\tilde{E}=\oplus_{k}(-1)^{k+2} \tilde{E}_{k} \quad$ (viewed as a matrix). Then $\tilde{E} \tilde{\partial}+\tilde{\partial} \tilde{E}=\tilde{D}_{1}^{\gamma}-\tilde{D}_{2}^{\gamma}$. So $\operatorname{trace}\left(\tilde{\partial} \otimes\left(\tilde{D}_{1}^{\gamma}-\tilde{D}_{2}^{\gamma}\right)\right)$ $=d \operatorname{trace}(\tilde{\partial} \otimes \tilde{\partial} \otimes \tilde{E})$ is a Hochschild boundary. The desired result now follows from Proposition 2.1.

Direct calculation yields:

$$
\begin{equation*}
d\left(\operatorname{trace}\left(\tilde{\partial} \otimes \tilde{D}^{\gamma}\right)\right)=\chi(X)\left(1-\eta_{\#}(\gamma)^{-1}\right) . \tag{2.3}
\end{equation*}
$$

This leads to a quick proof (translating an idea of Stallings [St]) of an important theorem of Gottlieb [Got, Theorem IV.1]:

Proposition 2.4. If $\chi(X) \neq 0$ then $\mathscr{G}(X)$ is trivial.
Proof. Since $\chi(X) \neq 0$, (2.3) shows that every $\left(1-\eta_{\#}(\gamma)^{-1}\right)$ represents $0 \in H H_{0}(\mathbf{Z} G)$. This implies that $\eta_{\#}(\gamma)=1$.

Proposition 2.5. In the Hochschild complex, $C_{*}(\mathbf{Z} G, \mathbf{Z} G)$, trace $\left(\tilde{\partial} \otimes \tilde{D}^{\gamma}\right)$ is a cycle.

Proof. If $\chi(X)=0$, use (2.3). If $\chi(X) \neq 0$, use (2.3) and Proposition 2.4.

Define the lift of $\chi_{1}(\cdot ; \mathbf{Z})$ to be the function $\tilde{\mathrm{X}}_{1}(X): \Gamma \rightarrow H H_{1}(\mathbf{Z} G)$ which takes γ to $T_{1}\left(\tilde{\mathrm{a}} \otimes \tilde{D}^{\gamma}\right)$, the homology class of the cycle trace $\left(\tilde{\partial} \otimes \tilde{D}^{\gamma}\right)$. The proof of Proposition 2.2 shows that this is also independent of the choice of F^{γ} representing γ.

There is a left action of $Z(G)$ on $H H_{*}(\mathbf{Z} G)$. At the level of chains it is defined by

$$
\omega \cdot\left(g_{1} \otimes \cdots \otimes g_{n} \otimes m\right)=g_{1} \otimes \cdots \otimes g_{n} \otimes\left(m \omega^{-1}\right)
$$

where $\omega \in Z(G)$. One easily checks that this action is compatible with d
and hence makes $H H_{*}(\mathbf{Z} G)$ into a left $Z(G)$-module. The summand $H H_{*}(\mathbf{Z} G)_{C}$ is taken by the left action of ω isomorphically onto the summand $H H_{*}(\mathbf{Z} G)_{C \omega^{-1}}$ where $C \omega^{-1}$ is the conjugacy class $\left\{g \omega^{-1} \mid g \in C\right\}$.

Since η maps Γ into $Z(G), \eta$ defines a left action of Γ on $C_{*}(\mathbf{Z} G, \mathbf{Z} G)$ and on $H H_{1}(\mathbf{Z} G)$. By considering lifts of homotopies, we clearly get:

Proposition 2.6. When $H H_{1}(\mathbf{Z} G)$ is regarded as a left Γ-module, $\tilde{\mathrm{X}}_{1}(X) \quad$ becomes a derivation; i.e. $\quad \tilde{\mathrm{X}}_{1}(X)\left(\gamma_{1} \gamma_{2}\right)=\tilde{\mathrm{X}}_{1}(X)\left(\gamma_{1}\right)+$ $\gamma_{1} \cdot \tilde{\mathrm{X}}_{1}(X)\left(\gamma_{2}\right)$.

Derivations modulo inner derivations yield one-dimensional cohomology; in particular, $\tilde{\mathrm{X}}_{1}(X)$ defines a cohomology class $\tilde{\chi}_{1}(X) \equiv\left[\tilde{\mathrm{X}}_{1}(X)\right]$ $\in H^{1}\left(\Gamma, H H_{1}(\mathbf{Z} G)\right)$.

The derivation $\tilde{\mathrm{X}}_{1}(X)$ depends on the choice of lifts \tilde{e} of the cells e of X (see §1). However, we have:

Proposition 2.7. Up to inner derivations, $\tilde{\mathrm{X}}_{1}(X)$ is independent of the choice of cell orientations and of the choice of lifts. Hence $\tilde{\chi}_{1}(X)$ is a well-defined cohomology class.

Proof. Another choice of cell orientations and lifts to the universal cover determines a chain complex $\left(C_{*}^{\prime}(\tilde{X}), \tilde{\partial}_{*}^{\prime}\right)$ and a chain homotopy $\tilde{E}_{k}^{\gamma}: C_{k}^{\prime}(\tilde{X})$ $\rightarrow C_{k+1}^{\prime}(\tilde{X})$. By the "change of basis formula", $\left[\mathrm{GN}_{1}\right.$, Proposition 3.3], we have:

$$
T_{1}\left(\tilde{\partial}^{\prime} \otimes \tilde{E}^{\gamma}\right)-T_{1}\left(\tilde{\partial} \otimes \tilde{D}^{\gamma}\right)=T_{1}\left(U \otimes U^{-1}\left(1-\eta_{\#}(\gamma)^{-1}\right)\right)
$$

where U is the change of basis matrix. Since $\gamma \mapsto T_{1}\left(U \otimes U^{-1}\left(1-\eta_{\#}(\gamma)^{-1}\right)\right)$ is clearly an inner derivation, the conclusion follows.

We may regard Definition A_{1} as defining a cohomology class $\chi_{1}(X)$ $\in H^{1}\left(\Gamma, H_{1}(G)\right)$. Clearly we have:

Proposition 2.8. Under the homomorphism induced by $\varepsilon_{*}: H H_{1}(\mathbf{Z} G)$ $\rightarrow H_{1}(G), \tilde{\chi}_{1}(X)$ is taken to $\chi_{1}(X)$. Thus Definition A_{1} is independent of the choice of lifts and $\chi_{1}(X)$ is homomorphism.

Despite Propositions 2.2 and 2.8, the formula in Definition A_{1} might appear to depend on the CW structure of X. However, we have:

THEOREM 2.9. The cohomology classes $\tilde{\chi}_{1}(X)$ and $\chi_{1}(X)$ are homotopy invariants.

Proof. Since $\varepsilon_{*}\left(\tilde{\chi}_{1}(X)\right)=\chi_{1}(X)$, it is sufficient to show that $\tilde{\chi}_{1}(X)$ is a homotopy invariant. Let $X \rightarrow Y$ be a homotopy equivalence. By making use of mapping cylinders, we may assume without loss of generality that $X \rightarrow Y$ is an inclusion of X into Y as a subcomplex. Choose orientations for the cells of Y and oriented lifts of these cells to the universal cover, \tilde{Y}, of Y. Let $\tilde{X}=p^{-1}(X)$ where $p: \tilde{Y} \rightarrow Y$ is the covering projection. Since $X \hookrightarrow Y$ is a homotopy equivalence, \tilde{X} is the universal cover of X. Choose the basepoint to be a vertex of X. Given $\gamma \in \Gamma^{\prime}=\pi_{1}(\mathscr{E}(Y)$, id), the homotopy extension property allows one to find a self homotopy of the identity $F^{\gamma}: Y \times I \rightarrow Y$ which has the additional property that $F^{\gamma}(X \times I) \subset X$. Let $\tilde{D}^{\gamma}: C_{*}(\tilde{Y}) \rightarrow C_{*}(\tilde{Y})$ be the chain homotopy determined by F^{γ} and let $\tilde{D}^{\gamma} \mid$ be the restriction of \tilde{D}_{*}^{γ} to $C_{*}(\tilde{X})$. Let $C_{*}(\tilde{Y}, \tilde{X})$ be the relative chain complex with boundary operator denoted by $\tilde{\partial}$. Then \tilde{D}_{*}^{γ} induces a chain homotopy on this complex which we will denote by $\bar{D}{ }_{*}^{\gamma}$. There is a commutative diagram:

$$
\begin{array}{rllll}
C_{*}(\tilde{X}) & \rightarrow & C_{*}(\tilde{Y}) & \rightarrow & C_{*}(\tilde{Y}, \tilde{X}) \\
\tilde{D}_{*}^{\gamma} \mid \downarrow & \tilde{D}_{*}^{\gamma} \downarrow & & \bar{D}_{*}^{\gamma} \downarrow \\
C_{*}(\tilde{Y}) & \rightarrow & C_{*}(\tilde{Y}) & \rightarrow & C_{*}(\tilde{Y}, \tilde{X}) .
\end{array}
$$

By [GN ${ }_{1}$, Proposition 3.5], we have that, in $H H_{1}(\mathbf{Z} G)$:

$$
T_{1}\left(\tilde{\partial} \otimes \tilde{D}^{\gamma}\right)-T_{1}\left(\tilde{\partial}\left|\otimes \tilde{D}^{\gamma}\right|\right)=T_{1}\left(\overline{\mathrm{\partial}} \otimes \bar{D}^{\gamma}\right) .
$$

Although for a given $\gamma \in \Gamma^{\prime}, \quad T_{1}\left(\bar{\partial}_{*} \otimes \bar{D}_{*}^{\gamma}\right)$ could, in principle, be nonzero we will show that $\gamma \mapsto T_{1}\left(\bar{\partial}_{*} \otimes \bar{D}_{*}^{\gamma}\right)$ is a coboundary. Let $\bar{C}_{*}=C_{*}(\tilde{Y}, \tilde{X})$. Since $X \hookrightarrow Y$ is a homotopy equivalence, \bar{C} is a contractible chain complex. Let $H_{*}: \bar{C}_{*} \rightarrow \bar{C}_{*}$ be a chain contraction. Then $\bar{D}{ }^{\gamma}$ is chain homotopic to $H_{*}\left(1-\eta_{\#}(\gamma)^{-1}\right)$ via the chain homotopy $H_{*}\left(\bar{D}_{*}^{\gamma}-H_{*}\left(1-\eta_{\#}(\gamma)^{-1}\right)\right)$. Using the given bases, we can represent $\bar{\partial}$ and H as matrices over $\mathbf{Z} \pi_{1}(Y)$. Reusing symbols, we write $\bar{\partial}=\oplus_{i} \bar{\partial}_{i}$, $H=\oplus_{i}(-1)^{i+1} H_{i}$ (viewed as matrices). Then, by [GN ${ }_{1}$, Lemma 3.2], $T_{1}\left(\bar{\partial} \otimes \bar{D}^{\gamma}\right)=T_{1}\left(\bar{\partial} \otimes H\left(1-\eta_{\#}(\gamma)^{-1}\right)\right)$ where $H\left(1-\eta_{\#}(\gamma)^{-1}\right)$ is the matrix obtained by multiplying each element of H on the right by $1-\eta_{\#}(\gamma)^{-1} \in \mathbf{Z} \pi_{1}(Y) . \quad$ Clearly, $\quad \gamma \mapsto T_{1}\left(\bar{\partial} \otimes H\left(1-\eta_{\#}(\gamma)^{-1}\right)\right) \quad$ is \quad an inner derivation. It follows that the derivations $\gamma \mapsto T_{1}\left(\tilde{\partial} \otimes \tilde{D}^{\gamma}\right)$ and $\gamma \mapsto T_{1}\left(\tilde{\partial}\left|\otimes \tilde{D}^{\gamma}\right|\right)$ represent the same cohomology class.

Corollary 2.10. The formula in Definition A_{1} is a well-defined homotopy invariant of X.

