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let G=1{e,1}-PGL(n+1,C), where 1:P{ > P¢ is given by 1(z) =2
and e is the identity map. By Lemmas 5 and 4 applied to the restrictions
flu,, there are transformations A, € G such that f v, = A jlv,. Since an
element of G is uniquely determined by its values on a nonempty open subset
of Py and (U;u - uU)n U, #0, it follows by induction that
A; = A, for all j. Hence f = A4,|y. [

3. THE POINCARE-TANAKA AND CHERN-JI THEOREMS

The Segre family .#p mentioned in the introduction has the projective
analogue

n
My ={(z,w) e PR X Pk: Y z;,w; =0},
i=0
(In fact .#% is a compactification of .#5 ; see the proof of Corollary 8.)
We let n;: Py x P%L — P} denote the projection to the i-th factor, for
[ = 1, 2. The main result of this section is the following generalization of the
Chern-Ji theorem [CJ, Theorem 2]; our generalization says that a pair of
local homeomorphisms of P% (K = R or C) mapping .#% into itself must be
projective-linear, or possibly anti-projective-linear (if K = C):

THEOREM 6. Let (a',a?)e #%, where K=R or C, n>2.
Let U,,U, be open sets in P7% containing a',a? respectively, and
let V; be the connected component of m,(M% U, x U,) containing
ai, for i=1,2. If fi:U; =Py (i=1,2) are continuous injective maps
such that

(1 X f) (MU x Uy) C My,
then there exists A € PGL(n + 1,K) such that
W) fi=A on V, and f,="A"' on V,, if K=R,
(i) either (1) holds or f_l =A on V; and f2= ‘A-Y on V,,
if K=C.

REMARK. If the sets m;(#x N U, x U,) are connected, then
Vi=mni(Myn U x Uy) and we have #% N U, x U, = My NV X V.
In fact, if we assume that only one of the projections n, (A% U, x U,)
is connected, then by the uniqueness of A it follows that the conclusion
of Theorem 6 holds with V; = (MU X Uy), fori=1,2.
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Proof of Theorem 6. For a point w € P} we write
wt ={zePliz-w=0},
where z - w = Z;.:Ozjwj. For a subset S C P} we also write
L ={zePi:z-w=0vVwekE}.

We consider the collection of lines

g():{LE g(Vl):LJ‘ N Uz#:@},

which is open in & (V). If z is an arbitrary point of V;, then by hypothesis
we can choose w € U, such that (z, w) € .#7%. If we let L be any projective
line in w+ containing z, then w € Lt n U, and hence L € &,. Therefore
UZ, > V.

Now let L € &, be arbitrary. We claim that we can choose points
wl..,wi-le L+t nU,, such that f,(w!),..., fo(w”-1) are in general
position: If n = 2, the claim is a tautology, so suppose n > 3. If the claim
were false, then f,(L*+ n U,) must lie in a projective linear subspace
P(E) of dimension n — 3 (where E is a linear subspace of K"*! of
dimension #n — 2). But then f, would be a continuous injection from
(L+ n U,), which has topological dimension n» — 2 or 2n — 4 (depending on
whether K equals R or C), into P (), which has topological dimension n — 3
or 2n — 6. This contradicts dimension theory.

Let wl,...,wr-lelL+n U,, such that f,(w!),...,fo(w""1) are
in general position, as above. By moving the points slightly if necessary, we

can assume also that w!,...,w”~1 are in general position, and hence
L =<(wl,...,wr-1)L We note that by hypothesis, fi(wt n U;) C fr(w)*
for all w € U,. Therefore
n-—1 n-—1
fHILnU)= N fiw/tnU)C N fr(w/)*
j=1 j=1

= (oW, ..., w1t e L3 (Uy) .

Let G be the group of projective-linear, and if K = C, anti-projective
linear, transformations of P} as in the proof of Theorem 3. By Theorem 3,
there exists A € G such that f; = A on Vy; similarly, there exists B € G such
that f, = B on V,. By replacing f; X f, with f 1 X f_z if necessary, we can
assume that A € PGL(n + 1, K). We now show that B=/A-1: Let M be
the connected component of .#% n U; X U, containing (a!, ¢?). Fix a point
wen,(M) CV,, and choose z!,...,z2" € w* NV, in general position.
Then (Az/, Bw) = (f1(z7), fa(w)) € #7% since (z/, w) € #%, and thus
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0=Az/-Bw=2z/-'ABw,

for j = 1, ..., n. Therefore ‘/ABw € wt+ = {w}. Since wis an arbitrary point
of 7, (M) and since elements of G are uniquely determined by their values
on the open set m,(M), it follows that ‘AB is the identity e € G, and
therefore B=‘A-'e PGL(n + 1,K). U]

COROLLARY 7 (Chern-Ji [CJ, Theorem 2]). Suppose U,U,V,V
are connected open  sets in P{L such that H¢nUXV#EQ. If
fU— U g: V- 14 are biholomorphic maps such that

(FXQ(MLAUXV)C .uL,

then f and g are restrictions of elements of PGL(n + 1, C).

We conclude this paper by demonstrating how the following theorem of
Poincaré and Tanaka is obtained from Corollary 7.

COROLLARY 8 (Poincaré-Tanaka Theorem) [Po], [Ta]. Let B, denote
the unit ball in C",n > 2. Suppose that U is a connected open set
in C" such that UndB,# 0. If f:U— C" is a nonconstant holo-
morphic map such that f(U n0B,) C 8B,, then f|uy~p, extends to an
automorphism of B,.

Proof. By an elementary argument given by H. Alexander ([A], p. 250]),
we can assume that the Jacobian matrix of f is nonsingular at some
point z,€ Un 0B,. (We shall give Alexander’s argument later.) By
replacing U with a neighborhood of z,, we can assume that f is injective.
Let 7: C" — C" be the conjugation z+—> z. Let V' = t(U) and consider the
holorriorphic map g=710 fot:V—=>C". We let U= f(U), V= g(V)
= 1(U) so that the maps f:U— ﬁ, g: V- I> are biholomorphic. We
let v denote the function on C” X C" given by y(z, w) = Z;: (2w — 1
and we consider the “Segre family”

Mg, ={(z,w) e C" X C":y(z,w) =0}.

Let S: C"— C2" be given by S(z2) = (z, 7), so that S-1(.#g,) = 0B, and
Sof=(fxg)oS Let Q=UXYV and N=S0OB,) = Mg, N S(C").
Then

(fxg@@nNN)=So f(UndB, CS@B,)=NC .4, .

Choose a point zo € U n 0B,; then (29, Z0) € Q N N. Since y o (f X @)
vanishes on Q@ N N and N is a totally real submanifold of (real) dimen-



214 B. SHIFFMAN

sion 2n — 1 in #g,, it follows that y o (f X g) vanishes on the connected
component of Q N .#p,  containing (zo,2¢). After shrinking U if neces-
sary, we can assume that y o (f X g) vanishes on Q n .#p and thus
(f xXg)(Qn Mg ) C #p,. We consider the embedding 1 x 1:C, x C,
S P¢ x Pg ogiven by 1(zy,...,2,) = (/= 1:2,:...:2,), which maps .#3,
onto a (dense open) subset of .#¢. By Corollary 7 applied to the maps

f=1ofor-t:aU)»uU), g=10goi-1:u(V)=1(V),

there exists A € PGL(n + 1, C) such that f = A |,y,. Thus f extends to the
fractional linear map 1-! © 4 © 1, which gives an automorphism of B,,.

We now give a simplified form of Alexander’s proof [Al, p. 250] that the
Jacobian matrix of the map f must be nonsingular at some point of
U n 0B,. We begin by observing that f~!1(dB,) is nowhere dense. Indeed,
suppose on the contrary that f ~!(dB,) contains a connected open set U, and
assume without loss of generality that f(z,) = (1,0, ...,0) for some point
Zo € Uy. Then by the maximum principle, f; = 1 and hence f = (1,0, ..., 0)
on U, and thus on U, contradicting the assumption that f is nonconstant.
Now suppose on the contrary that the Jacobian determinant of f vanishes
identically on U n 8B,,. Since the zero of the Jacobian determinant is an
analytic subvariety, the Jacobian determinant must vanish identically
on U. As a consequence, the fibers of f contain no isolated points. Assume
without loss of generality that (1,0, ..., 0) € U and choose r < 1 such that the
spherical cap W:= {z € B,:Rez; > r} is contained in U. Choose a point
p € W such that f(p) ¢ 0B,. Let A be the connected component of
f~'(f(p)) n W that contains p; A is an analytic subvariety of W of
positive dimension. Furthermore A\A C{zeCr:Rez; = r}. By the
maximum principle (see for example [Gu, Theorem H2]) applied to the
holomorphic function ¢: A — C given by ¢(z) = exp z,, we conclude that ¢
is constant and thus A\A = @ so that A is a compact subvariety of W of
positive dimension, which is impossible. [
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